Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers.

White RT, Monro TM.

Opt Lett. 2011 Jun 15;36(12):2351-3. doi: 10.1364/OL.36.002351.

PMID:
21686017
2.

Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm.

Duhant M, Renard W, Canat G, Nguyen TN, Smektala F, Troles J, Coulombier Q, Toupin P, Brilland L, Bourdon P, Renversez G.

Opt Lett. 2011 Aug 1;36(15):2859-61. doi: 10.1364/OL.36.002859.

PMID:
21808338
3.
4.
5.
6.

Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier.

Farrell C, Codemard CA, Nilsson J.

Opt Express. 2010 Nov 8;18(23):24126-39. doi: 10.1364/OE.18.024126.

PMID:
21164759
7.

Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

Liu BW, Hu ML, Fang XH, Li YF, Chai L, Wang CY, Tong W, Luo J, Voronin AA, Zheltikov AM.

Opt Express. 2008 Sep 15;16(19):14987-96.

PMID:
18795035
8.

Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering.

Vanholsbeeck F, Coen S, Emplit P, Martinelli C, Sylvestre T.

Opt Lett. 2004 May 1;29(9):998-1000.

PMID:
15143653
9.

Efficient supercontinuum generations in silica suspended core fibers.

Fu L, Thomas BK, Dong L.

Opt Express. 2008 Nov 24;16(24):19629-42.

PMID:
19030049
10.

Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm.

Geng J, Wang Q, Jiang Z, Luo T, Jiang S, Czarnecki G.

Opt Lett. 2011 Jun 15;36(12):2293-5. doi: 10.1364/OL.36.002293.

PMID:
21685997
11.

Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.

Kuzin E, Mendoza-Vazquez S, Gutierrez-Gutierrez J, Ibarra-Escamilla B, Haus J, Rojas-Laguna R.

Opt Express. 2005 May 2;13(9):3388-96.

PMID:
19495241
12.
13.

Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient.

Kulkarni OP, Xia C, Lee DJ, Kumar M, Kuditcher A, Islam MN, Terry FL, Freeman MJ, Aitken BG, Currie SC, McCarthy JE, Powley ML, Nolan DA.

Opt Express. 2006 Aug 21;14(17):7924-30.

PMID:
19529161
14.

Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation.

Pant R, Li E, Choi DY, Poulton CG, Madden SJ, Luther-Davies B, Eggleton BJ.

Opt Lett. 2011 Sep 15;36(18):3687-9. doi: 10.1364/OL.36.003687.

PMID:
21931433
15.

Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation.

Hartung A, Heidt AM, Bartelt H.

Opt Express. 2011 Apr 11;19(8):7742-9. doi: 10.1364/OE.19.007742.

PMID:
21503084
16.

Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber.

Liu L, Qin G, Tian Q, Zhao D, Qin W.

Opt Express. 2011 May 23;19(11):10041-8. doi: 10.1364/OE.19.010041.

PMID:
21643262
17.

Dynamics of Raman soliton during supercontinuum generation near the zero-dispersion wavelength of optical fibers.

Roy S, Bhadra SK, Saitoh K, Koshiba M, Agrawal GP.

Opt Express. 2011 May 23;19(11):10443-55. doi: 10.1364/OE.19.010443.

PMID:
21643299
18.

Mid-infrared supercontinuum generation in step-index As<sub>2</sub>S<sub>3</sub> fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source.

Yao J, Zhang B, Yin K, Yang L, Hou J, Lu Q.

Opt Express. 2016 Jun 27;24(13):15093-100. doi: 10.1364/OE.24.015093.

PMID:
27410660
19.

Efficient generation of broad Raman sidebands in an index-guided photonic crystal fiber.

Li Y, Hou J, Jiang Z, Leng J.

Appl Opt. 2013 Apr 1;52(10):2049-54. doi: 10.1364/AO.52.002049.

PMID:
23545959
20.

Observation of spectral broadening caused by self-phase modulation in highly multimode optical fiber.

Feldman SF, Staver PR, Lotshaw WT.

Appl Opt. 1997 Jan 20;36(3):617-21.

PMID:
18250717

Supplemental Content

Support Center