Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 541

1.

3',4'-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries.

Leo CH, Hart JL, Woodman OL.

PLoS One. 2011;6(6):e20813. doi: 10.1371/journal.pone.0020813. Epub 2011 Jun 6.

2.

3',4'-Dihydroxyflavonol restores endothelium-dependent relaxation in small mesenteric artery from rats with type 1 and type 2 diabetes.

Leo CH, Hart JL, Woodman OL.

Eur J Pharmacol. 2011 Jun 1;659(2-3):193-8. doi: 10.1016/j.ejphar.2011.03.018. Epub 2011 Mar 29.

PMID:
21453697
3.

Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes.

Leo CH, Hart JL, Woodman OL.

Br J Pharmacol. 2011 Jan;162(2):365-77. doi: 10.1111/j.1476-5381.2010.01023.x.

4.

3',4'-Dihydroxyflavonol prevents diabetes-induced endothelial dysfunction in rat aorta.

Woodman OL, Malakul W.

Life Sci. 2009 Jul 3;85(1-2):54-9. doi: 10.1016/j.lfs.2009.04.012. Epub 2009 May 3.

PMID:
19409910
5.

The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose.

Salheen SM, Panchapakesan U, Pollock CA, Woodman OL.

PLoS One. 2015 Nov 30;10(11):e0143941. doi: 10.1371/journal.pone.0143941. eCollection 2015.

6.

Increased nitric oxide activity compensates for increased oxidative stress to maintain endothelial function in rat aorta in early type 1 diabetes.

Joshi A, Woodman OL.

Naunyn Schmiedebergs Arch Pharmacol. 2012 Nov;385(11):1083-94. doi: 10.1007/s00210-012-0794-3. Epub 2012 Sep 11.

PMID:
22965470
7.

Short-term type 1 diabetes alters the mechanism of endothelium-dependent relaxation in the rat carotid artery.

Leo CH, Joshi A, Woodman OL.

Am J Physiol Heart Circ Physiol. 2010 Aug;299(2):H502-11. doi: 10.1152/ajpheart.01197.2009. Epub 2010 Jun 11.

8.

Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.

Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F.

Eur J Pharmacol. 2005 Mar 21;511(1):53-64.

PMID:
15777779
9.

Sex differences in mesenteric endothelial function of streptozotocin-induced diabetic rats: a shift in the relative importance of EDRFs.

Zhang R, Thor D, Han X, Anderson L, Rahimian R.

Am J Physiol Heart Circ Physiol. 2012 Nov 15;303(10):H1183-98. doi: 10.1152/ajpheart.00327.2012. Epub 2012 Sep 14.

10.

Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase.

Gaete PS, Lillo MA, Ardiles NM, Pérez FR, Figueroa XF.

Free Radic Biol Med. 2012 Mar 1;52(5):860-70. doi: 10.1016/j.freeradbiomed.2011.11.036. Epub 2011 Dec 23.

PMID:
22210378
11.

Mechanisms underlying endothelial dysfunction in diabetes mellitus.

Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T.

Circ Res. 2001 Feb 2;88(2):E14-22.

12.

Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow.

Belin de Chantemèle EJ, Vessières E, Guihot AL, Toutain B, Maquignau M, Loufrani L, Henrion D.

Cardiovasc Res. 2009 Mar 1;81(4):788-96. doi: 10.1093/cvr/cvn334. Epub 2008 Dec 2.

13.

Caloric restriction reverses high-fat diet-induced endothelial dysfunction and vascular superoxide production in C57Bl/6 mice.

Ketonen J, Pilvi T, Mervaala E.

Heart Vessels. 2010 May;25(3):254-62. doi: 10.1007/s00380-009-1182-x. Epub 2010 May 29.

PMID:
20512454
14.

Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes.

Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K.

Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1165-H1176. doi: 10.1152/ajpheart.00486.2008. Epub 2008 Jul 18.

15.

Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries.

Pourageaud F, Bappel-Gozalbes C, Marthan R, Freslon JL.

Br J Pharmacol. 2000 Nov;131(6):1211-9.

16.

Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta.

Malakul W, Thirawarapan S, Suvitayavat W, Woodman OL.

Clin Exp Pharmacol Physiol. 2008 Feb;35(2):192-200. Epub 2007 Oct 17.

PMID:
17941894
18.
19.

Type 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats.

Schach C, Resch M, Schmid PM, Riegger GA, Endemann DH.

Am J Physiol Heart Circ Physiol. 2014 Oct 15;307(8):H1093-102. doi: 10.1152/ajpheart.00240.2013. Epub 2014 Aug 15.

20.

Apolipoprotein B of low-density lipoprotein impairs nitric oxide-mediated endothelium-dependent relaxation in rat mesenteric arteries.

Zhang Y, Zhang W, Edvinsson L, Xu CB.

Eur J Pharmacol. 2014 Feb 15;725:10-7. doi: 10.1016/j.ejphar.2014.01.008. Epub 2014 Jan 18.

PMID:
24444440

Supplemental Content

Support Center