Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101


Functional and transcriptomic recovery of infarcted mouse myocardium treated with bone marrow mononuclear cells.

Lachtermacher S, Esporcatte BL, Fortes Fda S, Rocha NN, Montalvão F, Costa PC, Belem L, Rabischoffisky A, Faria Neto HC, Vasconcellos R, Iacobas DA, Iacobas S, Spray DC, Thomas NM, Goldenberg RC, de Carvalho AC.

Stem Cell Rev. 2012 Mar;8(1):251-61. doi: 10.1007/s12015-011-9282-2.


Preservation of myocardial structure is enhanced by pim-1 engineering of bone marrow cells.

Quijada P, Toko H, Fischer KM, Bailey B, Reilly P, Hunt KD, Gude NA, Avitabile D, Sussman MA.

Circ Res. 2012 Jun 22;111(1):77-86. doi: 10.1161/CIRCRESAHA.112.265207. Epub 2012 May 22.


Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells.

Soares MB, Lima RS, Souza BS, Vasconcelos JF, Rocha LL, Dos Santos RR, Iacobas S, Goldenberg RC, Lisanti MP, Iacobas DA, Tanowitz HB, Spray DC, Campos de Carvalho AC.

Cell Cycle. 2011 May 1;10(9):1448-55. Epub 2011 May 1.


The chemokine decoy receptor D6 prevents excessive inflammation and adverse ventricular remodeling after myocardial infarction.

Cochain C, Auvynet C, Poupel L, Vilar J, Dumeau E, Richart A, Récalde A, Zouggari Y, Yin KY, Bruneval P, Renault G, Marchiol C, Bonnin P, Lévy B, Bonecchi R, Locati M, Combadière C, Silvestre JS.

Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2206-13. doi: 10.1161/ATVBAHA.112.254409. Epub 2012 Jul 12.


Bone-marrow-derived side population cells for myocardial regeneration.

Sadek HA, Martin CM, Latif SS, Garry MG, Garry DJ.

J Cardiovasc Transl Res. 2009 Jun;2(2):173-81. doi: 10.1007/s12265-009-9090-0. Epub 2009 Mar 19.


Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy.

Memon IA, Sawa Y, Miyagawa S, Taketani S, Matsuda H.

J Thorac Cardiovasc Surg. 2005 Sep;130(3):646-53.


Long-term functional improvement and gene expression changes after bone marrow-derived multipotent progenitor cell transplantation in myocardial infarction.

Jameel MN, Li Q, Mansoor A, Qiang X, Sarver A, Wang X, Swingen C, Zhang J.

Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1348-56. doi: 10.1152/ajpheart.01100.2009. Epub 2010 Feb 19.


Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction.

Lichtenauer M, Mildner M, Baumgartner A, Hasun M, Werba G, Beer L, Altmann P, Roth G, Gyöngyösi M, Podesser BK, Ankersmit HJ.

Basic Res Cardiol. 2011 Jun;106(4):645-55. doi: 10.1007/s00395-011-0173-0. Epub 2011 Mar 17.


Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction.

Burchfield JS, Iwasaki M, Koyanagi M, Urbich C, Rosenthal N, Zeiher AM, Dimmeler S.

Circ Res. 2008 Jul 18;103(2):203-11. doi: 10.1161/CIRCRESAHA.108.178475. Epub 2008 Jun 19.


Single cell gene profiling revealed heterogeneity of paracrine effects of bone marrow cells in mouse infarcted hearts.

Li Y, Guo X, Xue Q, Zhu M, Gao L, Wang Y.

PLoS One. 2013 Jul 5;8(7):e68270. doi: 10.1371/journal.pone.0068270. Print 2013.


Sustained-release delivery of prostacyclin analogue enhances bone marrow-cell recruitment and yields functional benefits for acute myocardial infarction in mice.

Imanishi Y, Miyagawa S, Fukushima S, Ishimaru K, Sougawa N, Saito A, Sakai Y, Sawa Y.

PLoS One. 2013 Jul 19;8(7):e69302. doi: 10.1371/journal.pone.0069302. Print 2013.


Cell therapy prevents structural, functional and molecular remodeling of remote non-infarcted myocardium.

dos Santos L, Gonçalves GA, Davel AP, Santos AA, Krieger JE, Rossoni LV, Tucci PJ.

Int J Cardiol. 2013 Oct 9;168(4):3829-36. doi: 10.1016/j.ijcard.2013.06.026. Epub 2013 Jul 12.


Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells.

Zhang S, Sun A, Ma H, Yao K, Zhou N, Shen L, Zhang C, Zou Y, Ge J.

J Cell Mol Med. 2011 Oct;15(10):2245-61. doi: 10.1111/j.1582-4934.2010.01217.x.


[Upregulating the expression of angiogenesis-related genes by transplanting autologous mononuclear bone marrow cells into myocardial infarction scar and the periphery].

Sun YX, Zhao Q, Wang YQ, Yang C, Pan CZ, Han PP, Chen RZ, Yang YZ, Wang KQ, Ge JB.

Zhonghua Xin Xue Guan Bing Za Zhi. 2005 Mar;33(3):260-4. Chinese.


Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice.

Puhl SL, Müller A, Wagner M, Devaux Y, Böhm M, Wagner DR, Maack C.

Am J Physiol Heart Circ Physiol. 2015 Jul 15;309(2):H345-59. doi: 10.1152/ajpheart.00683.2014. Epub 2015 May 22.


[Transplantation of bone marrow cells up-regulated the expressions of HSP32 and HSP70 in the acute ischemic myocardium].

Zhang S, Guo J, Zhang P, Liu Y, Jia Z, Feng X, Li Z, Li W, Ma K, Zhou C, Li L.

Beijing Da Xue Xue Bao. 2003 Oct;35(5):476-80. Chinese.


Bone marrow cells regenerate infarcted myocardium.

Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P.

Nature. 2001 Apr 5;410(6829):701-5.


Cell-based gene therapy modifies matrix remodeling after a myocardial infarction in tissue inhibitor of matrix metalloproteinase-3-deficient mice.

Angoulvant D, Fazel S, Weisel RD, Lai TY, Fedak PW, Chen L, Rafati S, Seneviratne CK, Degousee N, Li RK.

J Thorac Cardiovasc Surg. 2009 Feb;137(2):471-80. doi: 10.1016/j.jtcvs.2008.08.031.


Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells.

Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, Malik AB.

PLoS One. 2011;6(7):e22550. doi: 10.1371/journal.pone.0022550. Epub 2011 Jul 22.

Items per page

Supplemental Content

Support Center