Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104


A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120.

Boileau C, Eme L, Brochier-Armanet C, Janicki A, Zhang CC, Latifi A.

New Phytol. 2011 Sep;191(4):1108-18. doi: 10.1111/j.1469-8137.2011.03774.x. Epub 2011 Jun 8.


Overoxidation of 2-Cys peroxiredoxin in prokaryotes: cyanobacterial 2-Cys peroxiredoxins sensitive to oxidative stress.

Pascual MB, Mata-Cabana A, Florencio FJ, Lindahl M, Cejudo FJ.

J Biol Chem. 2010 Nov 5;285(45):34485-92. doi: 10.1074/jbc.M110.160465. Epub 2010 Aug 24.


Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.

Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG.

J Biol Chem. 2005 Feb 4;280(5):3125-8. Epub 2004 Dec 8.


The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response.

Rey P, Bécuwe N, Barrault MB, Rumeau D, Havaux M, Biteau B, Toledano MB.

Plant J. 2007 Feb;49(3):505-14. Epub 2007 Jan 1.


Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance.

Banerjee M, Chakravarty D, Ballal A.

BMC Plant Biol. 2015 Feb 21;15:60. doi: 10.1186/s12870-015-0444-2.


An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress.

Pulido P, Cazalis R, Cejudo FJ.

Plant J. 2009 Jan;57(1):132-45. doi: 10.1111/j.1365-313X.2008.03675.x. Epub 2008 Oct 7.


A novel glutaredoxin domain-containing peroxiredoxin 'All1541' protects the N2-fixing cyanobacterium Anabaena PCC 7120 from oxidative stress.

Banerjee M, Ballal A, Apte SK.

Biochem J. 2012 Mar 15;442(3):671-80. doi: 10.1042/BJ20111877.


Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.

Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS.

J Biol Chem. 2009 Mar 27;284(13):8470-7. doi: 10.1074/jbc.M808981200. Epub 2009 Jan 28.


The 1-Cys peroxiredoxin, a regulator of seed dormancy, functions as a molecular chaperone under oxidative stress conditions.

Kim SY, Paeng SK, Nawkar GM, Maibam P, Lee ES, Kim KS, Lee DH, Park DJ, Kang SB, Kim MR, Lee JH, Kim YH, Kim WY, Kang CH.

Plant Sci. 2011 Aug;181(2):119-24. doi: 10.1016/j.plantsci.2011.04.010. Epub 2011 Apr 30.


Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.

Iglesias-Baena I, Barranco-Medina S, Lázaro-Payo A, López-Jaramillo FJ, Sevilla F, Lázaro JJ.

J Exp Bot. 2010 Mar;61(5):1509-21. doi: 10.1093/jxb/erq016. Epub 2010 Feb 22.


The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts.

Puerto-Galán L, Pérez-Ruiz JM, Guinea M, Cejudo FJ.

J Exp Bot. 2015 May;66(10):2957-66. doi: 10.1093/jxb/eru512. Epub 2015 Jan 5.


Comparative analysis of cyanobacterial and plant peroxiredoxins and their electron donors: peroxidase activity and susceptibility to overoxidation.

Lindahl M, Cejudo FJ.

Methods Enzymol. 2013;527:257-73. doi: 10.1016/B978-0-12-405882-8.00014-3.


Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression.

Jeong W, Bae SH, Toledano MB, Rhee SG.

Free Radic Biol Med. 2012 Aug 1;53(3):447-56. doi: 10.1016/j.freeradbiomed.2012.05.020. Epub 2012 May 24. Review.


Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages.

Diet A, Abbas K, Bouton C, Guillon B, Tomasello F, Fourquet S, Toledano MB, Drapier JC.

J Biol Chem. 2007 Dec 14;282(50):36199-205. Epub 2007 Oct 5.


Plasmodium vivax and Plasmodium knowlesi: cloning, expression and functional analysis of 1-Cys peroxiredoxin.

Hakimi H, Asada M, Angeles JM, Kawai S, Inoue N, Kawazu S.

Exp Parasitol. 2013 Jan;133(1):101-5. doi: 10.1016/j.exppara.2012.10.018. Epub 2012 Nov 21.


Molecular and functional characterization of sulfiredoxin homologs from higher plants.

Liu XP, Liu XY, Zhang J, Xia ZL, Liu X, Qin HJ, Wang DW.

Cell Res. 2006 Mar;16(3):287-96.


The rate-limiting step of sulfiredoxin is associated with the transfer of the γ-phosphate of ATP to the sulfinic acid of overoxidized typical 2-Cys peroxiredoxins.

Roussel X, Boukhenouna S, Rahuel-Clermont S, Branlant G.

FEBS Lett. 2011 Feb 4;585(3):574-8. doi: 10.1016/j.febslet.2011.01.012. Epub 2011 Jan 13.

Supplemental Content

Support Center