Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae.

Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ.

Am J Bot. 2008 May;95(5):521-30. doi: 10.3732/ajb.2007333.

2.

Early evidence of xeromorphy in angiosperms: stomatal encryption in a new eocene species of Banksia (Proteaceae) from Western Australia.

Carpenter RJ, McLoughlin S, Hill RS, McNamara KJ, Jordan GJ.

Am J Bot. 2014 Sep;101(9):1486-97. doi: 10.3732/ajb.1400191.

3.
4.

Leaf fossils of Banksia (Proteaceae) from New Zealand: An Australian abroad.

Carpenter RJ, Jordan GJ, Lee DE, Hill RS.

Am J Bot. 2010 Feb;97(2):288-97. doi: 10.3732/ajb.0900199.

5.

What has molecular systematics contributed to our knowledge of the plant family Proteaceae?

Weston PH.

Methods Mol Biol. 2014;1115:365-97. doi: 10.1007/978-1-62703-767-9_18.

PMID:
24415484
6.

Water economy of Neotropical savanna trees: six paradigms revisited.

Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA.

Tree Physiol. 2008 Mar;28(3):395-404.

PMID:
18171663
7.

Stomatal crypts may facilitate diffusion of CO(2) to adaxial mesophyll cells in thick sclerophylls.

Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ.

Plant Cell Environ. 2009 Nov;32(11):1596-611. doi: 10.1111/j.1365-3040.2009.02024.x.

8.

Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae.

Jordan GJ, Dillon RA, Weston PH.

Am J Bot. 2005 May;92(5):789-96. doi: 10.3732/ajb.92.5.789.

9.

Environmental adaptation in stomatal size independent of the effects of genome size.

Jordan GJ, Carpenter RJ, Koutoulis A, Price A, Brodribb TJ.

New Phytol. 2015 Jan;205(2):608-17. doi: 10.1111/nph.13076.

10.

Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes.

Vico G, Manzoni S, Palmroth S, Katul G.

New Phytol. 2011 Nov;192(3):640-52. doi: 10.1111/j.1469-8137.2011.03847.x.

11.

Three-dimensional surface topography of the needle stomatal complexes of Pinus rigida and its hybrid species by complementary microscopy.

Kim KW, Kim DH, Han SH, Lee JC, Kim PG.

Micron. 2010 Aug;41(6):571-6. doi: 10.1016/j.micron.2010.04.008.

PMID:
20452778
12.
13.
14.

Nighttime transpiration in woody plants from contrasting ecosystems.

Dawson TE, Burgess SS, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR.

Tree Physiol. 2007 Apr;27(4):561-75.

PMID:
17241998
15.

Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation.

Litvak E, McCarthy HR, Pataki DE.

Tree Physiol. 2012 Apr;32(4):373-88. doi: 10.1093/treephys/tps015.

PMID:
22447283
16.
17.

Patchy stomatal behavior in broad-leaved trees grown in different habitats.

Takanashi S, Kosugi Y, Matsuo N, Tani M, Ohte N.

Tree Physiol. 2006 Dec;26(12):1565-78.

PMID:
17169896
18.

Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees.

Bush SE, Pataki DE, Hultine KR, West AG, Sperry JS, Ehleringer JR.

Oecologia. 2008 May;156(1):13-20. doi: 10.1007/s00442-008-0966-5.

PMID:
18270747
19.

Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species.

Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS.

Oecologia. 2008 Jan;154(4):625-35.

PMID:
17943318
20.

Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).

Maddison DR.

Mol Phylogenet Evol. 2012 Jun;63(3):533-76. doi: 10.1016/j.ympev.2012.01.015.

PMID:
22421212
Items per page

Supplemental Content

Support Center