Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy.

Delfín DA, Xu Y, Peterson JM, Guttridge DC, Rafael-Fortney JA, Janssen PM.

J Transl Med. 2011 May 17;9:68. doi: 10.1186/1479-5876-9-68.

2.

Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice.

Janssen PM, Hiranandani N, Mays TA, Rafael-Fortney JA.

Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2373-8.

3.

Diaphragm rescue alone prevents heart dysfunction in dystrophic mice.

Crisp A, Yin H, Goyenvalle A, Betts C, Moulton HM, Seow Y, Babbs A, Merritt T, Saleh AF, Gait MJ, Stuckey DJ, Clarke K, Davies KE, Wood MJ.

Hum Mol Genet. 2011 Feb 1;20(3):413-21. doi: 10.1093/hmg/ddq477.

PMID:
21062902
4.

Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS.

Exp Physiol. 2014 Apr;99(4):675-87. doi: 10.1113/expphysiol.2013.077255.

5.

Systemic delivery of NEMO binding domain/IKKγ inhibitory peptide to young mdx mice improves dystrophic skeletal muscle histopathology.

Reay DP, Yang M, Watchko JF, Daood M, O'Day TL, Rehman KK, Guttridge DC, Robbins PD, Clemens PR.

Neurobiol Dis. 2011 Sep;43(3):598-608. doi: 10.1016/j.nbd.2011.05.008.

6.

Prednisolone attenuates improvement of cardiac and skeletal contractile function and histopathology by lisinopril and spironolactone in the mdx mouse model of Duchenne muscular dystrophy.

Janssen PM, Murray JD, Schill KE, Rastogi N, Schultz EJ, Tran T, Raman SV, Rafael-Fortney JA.

PLoS One. 2014 Feb 13;9(2):e88360. doi: 10.1371/journal.pone.0088360.

7.

Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles.

Baker PE, Kearney JA, Gong B, Merriam AP, Kuhn DE, Porter JD, Rafael-Fortney JA.

Neurogenetics. 2006 May;7(2):81-91.

PMID:
16525850
8.

Effect of nuclear factor κB inhibition on serotype 9 adeno-associated viral (AAV9) minidystrophin gene transfer to the mdx mouse.

Reay DP, Niizawa GA, Watchko JF, Daood M, Reay JC, Raggi E, Clemens PR.

Mol Med. 2012 May 9;18:466-76. doi: 10.2119/molmed.2011.00404.

9.

Peptide-based inhibition of NF-κB rescues diaphragm muscle contractile dysfunction in a murine model of Duchenne muscular dystrophy.

Peterson JM, Kline W, Canan BD, Ricca DJ, Kaspar B, Delfín DA, DiRienzo K, Clemens PR, Robbins PD, Baldwin AS, Flood P, Kaumaya P, Freitas M, Kornegay JN, Mendell JR, Rafael-Fortney JA, Guttridge DC, Janssen PM.

Mol Med. 2011 May-Jun;17(5-6):508-15. doi: 10.2119/molmed.2010.00263.

10.

Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice.

van Putten M, Hulsker M, Young C, Nadarajah VD, Heemskerk H, van der Weerd L, 't Hoen PA, van Ommen GJ, Aartsma-Rus AM.

FASEB J. 2013 Jun;27(6):2484-95. doi: 10.1096/fj.12-224170.

11.

Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping.

Goyenvalle A, Babbs A, Powell D, Kole R, Fletcher S, Wilton SD, Davies KE.

Mol Ther. 2010 Jan;18(1):198-205. doi: 10.1038/mt.2009.248.

12.

Regulation of the cardiac sodium channel Nav1.5 by utrophin in dystrophin-deficient mice.

Albesa M, Ogrodnik J, Rougier JS, Abriel H.

Cardiovasc Res. 2011 Feb 1;89(2):320-8. doi: 10.1093/cvr/cvq326.

PMID:
20952415
13.

RhoA mediates defective stem cell function and heterotopic ossification in dystrophic muscle of mice.

Mu X, Usas A, Tang Y, Lu A, Wang B, Weiss K, Huard J.

FASEB J. 2013 Sep;27(9):3619-31. doi: 10.1096/fj.13-233460.

14.

NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy.

Kornegay JN, Peterson JM, Bogan DJ, Kline W, Bogan JR, Dow JL, Fan Z, Wang J, Ahn M, Zhu H, Styner M, Guttridge DC.

Skelet Muscle. 2014 Oct 23;4:18. doi: 10.1186/2044-5040-4-18.

15.

Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice.

Li D, Long C, Yue Y, Duan D.

Hum Mol Genet. 2009 Apr 1;18(7):1209-20. doi: 10.1093/hmg/ddp015.

16.

Comparison of skeletal muscle pathology and motor function of dystrophin and utrophin deficient mouse strains.

van Putten M, Kumar D, Hulsker M, Hoogaars WM, Plomp JJ, van Opstal A, van Iterson M, Admiraal P, van Ommen GJ, 't Hoen PA, Aartsma-Rus A.

Neuromuscul Disord. 2012 May;22(5):406-17. doi: 10.1016/j.nmd.2011.10.011.

17.

Systemic delivery of human bone marrow embryonic-like stem cells improves motor function of severely affected dystrophin/utrophin-deficient mice.

Pang RQ, He J, Zhang YY, Xiong F, Ruan GP, Zhu XQ, Wang Q, Wang JX, Zhu GX, Zhao J, Cai XM, Pan XH, Zhang C.

Cytotherapy. 2014 Dec;16(12):1739-49. doi: 10.1016/j.jcyt.2014.08.013.

PMID:
25442501
18.

Nestin expression in end-stage disease in dystrophin-deficient heart: implications for regeneration from endogenous cardiac stem cells.

Berry SE, Andruszkiewicz P, Chun JL, Hong J.

Stem Cells Transl Med. 2013 Nov;2(11):848-61. doi: 10.5966/sctm.2012-0174.

19.

Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice.

Ebihara S, Guibinga GH, Gilbert R, Nalbantoglu J, Massie B, Karpati G, Petrof BJ.

Physiol Genomics. 2000 Sep 8;3(3):133-44.

PMID:
11015608
20.
Items per page

Supplemental Content

Support Center