Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Temporal aspects of suppression in distortion-product otoacoustic emissions.

Rodriguez J, Neely ST.

J Acoust Soc Am. 2011 May;129(5):3082-9. doi: 10.1121/1.3575553.

2.

Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans.

Martin GK, Villasuso EI, Stagner BB, Lonsbury-Martin BL.

Hear Res. 2003 Mar;177(1-2):111-22.

PMID:
12618323
3.

Growth of suppression in humans based on distortion-product otoacoustic emission measurements.

Gorga MP, Neely ST, Kopun J, Tan H.

J Acoust Soc Am. 2011 Feb;129(2):801-6. doi: 10.1121/1.3523287.

4.

The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.

Johnson TA, Baranowski LG.

Ear Hear. 2012 Mar-Apr;33(2):239-49. doi: 10.1097/AUD.0b013e3182321da4.

PMID:
21918451
5.

High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions.

Arnold DJ, Lonsbury-Martin BL, Martin GK.

Arch Otolaryngol Head Neck Surg. 1999 Feb;125(2):215-22.

PMID:
10037289
6.

Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.

Dreisbach LE, Long KM, Lees SE.

Ear Hear. 2006 Oct;27(5):466-79.

PMID:
16957498
7.

Two-tone suppression of stimulus frequency otoacoustic emissions.

Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP.

J Acoust Soc Am. 2008 Mar;123(3):1479-94. doi: 10.1121/1.2828209.

8.

Distortion-product otoacoustic emission suppression tuning curves in humans.

Gorga MP, Neely ST, Kopun J, Tan H.

J Acoust Soc Am. 2011 Feb;129(2):817-27. doi: 10.1121/1.3531864.

9.
10.

Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications.

Wagner W, Plinkert PK, Vonthein R, Plontke SK.

Eur Arch Otorhinolaryngol. 2008 Oct;265(10):1165-72. doi: 10.1007/s00405-008-0593-0. Epub 2008 Feb 27.

PMID:
18301908
11.

Distribution of standing-wave errors in real-ear sound-level measurements.

Richmond SA, Kopun JG, Neely ST, Tan H, Gorga MP.

J Acoust Soc Am. 2011 May;129(5):3134-40. doi: 10.1121/1.3569726.

12.

Hearing threshold estimation using concurrent measurement of distortion product otoacoustic emissions and auditory steady-state responses.

Rosner T, Kandzia F, Oswald JA, Janssen T.

J Acoust Soc Am. 2011 Feb;129(2):840-51. doi: 10.1121/1.3531934.

PMID:
21361442
13.

Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions.

Johannesen PT, Lopez-Poveda EA.

J Acoust Soc Am. 2008 Oct;124(4):2149-63. doi: 10.1121/1.2968692.

PMID:
19062855
14.

Modeling DPOAE input/output function compression: comparisons with hearing thresholds.

Bhagat SP.

J Am Acad Audiol. 2014 Sep;25(8):746-59. doi: 10.3766/jaaa.25.8.5.

PMID:
25380121
16.
17.

Breaking away: violation of distortion emission phase-frequency invariance at low frequencies.

Dhar S, Rogers A, Abdala C.

J Acoust Soc Am. 2011 May;129(5):3115-22. doi: 10.1121/1.3569732.

18.

Evidence of upward spread of suppression in DPOAE measurements.

Gorga MP, Neely ST, Dorn PA, Dierking D, Cyr E.

J Acoust Soc Am. 2002 Dec;112(6):2910-20.

PMID:
12509012
19.

Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans.

Gorga MP, Neely ST, Dierking DM, Kopun J, Jolkowski K, Groenenboom K, Tan H, Stiegemann B.

J Acoust Soc Am. 2008 Apr;123(4):2172-90. doi: 10.1121/1.2839138.

20.

Effect of calibration method on distortion-product otoacoustic emission measurements at and around 4 kHz.

Reuven ML, Neely ST, Kopun JG, Rasetshwane DM, Allen JB, Tan H, Gorga MP.

Ear Hear. 2013 Nov-Dec;34(6):779-88. doi: 10.1097/AUD.0b013e3182994f15.

Supplemental Content

Support Center