Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Adamts5 deletion blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth factor β1 (TGFβ1) signaling.

Velasco J, Li J, DiPietro L, Stepp MA, Sandy JD, Plaas A.

J Biol Chem. 2011 Jul 22;286(29):26016-27. doi: 10.1074/jbc.M110.208694.

2.

Transforming growth factor-β1 induces type II collagen and aggrecan expression via activation of extracellular signal-regulated kinase 1/2 and Smad2/3 signaling pathways.

Zhu Y, Tao H, Jin C, Liu Y, Lu X, Hu X, Wang X.

Mol Med Rep. 2015 Oct;12(4):5573-9. doi: 10.3892/mmr.2015.4068.

PMID:
26165845
3.

Pericellular versican regulates the fibroblast-myofibroblast transition: a role for ADAMTS5 protease-mediated proteolysis.

Hattori N, Carrino DA, Lauer ME, Vasanji A, Wylie JD, Nelson CM, Apte SS.

J Biol Chem. 2011 Sep 30;286(39):34298-310. doi: 10.1074/jbc.M111.254938.

4.

Receptor expression modulates the specificity of transforming growth factor-beta signaling pathways.

Murakami M, Kawachi H, Ogawa K, Nishino Y, Funaba M.

Genes Cells. 2009 Apr;14(4):469-82. doi: 10.1111/j.1365-2443.2009.01283.x.

5.

ADAMTS5 is required for biomechanically-stimulated healing of murine tendinopathy.

Bell R, Li J, Shewman EF, Galante JO, Cole BJ, Bach BR Jr, Troy KL, Mikecz K, Sandy JD, Plaas AH, Wang VM.

J Orthop Res. 2013 Oct;31(10):1540-8. doi: 10.1002/jor.22398.

6.

Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice.

Shen J, Li J, Wang B, Jin H, Wang M, Zhang Y, Yang Y, Im HJ, O'Keefe R, Chen D.

Arthritis Rheum. 2013 Dec;65(12):3107-19. doi: 10.1002/art.38122.

7.

Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism.

Li J, Gorski DJ, Anemaet W, Velasco J, Takeuchi J, Sandy JD, Plaas A.

Arthritis Res Ther. 2012 Jun 21;14(3):R151. doi: 10.1186/ar3887.

8.

Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma.

Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, Vanpelt CS, Geng YJ, Deng JM, Behringer RR, de Crombrugghe B.

Arthritis Rheum. 2007 Jan;56(1):334-44.

9.

Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling.

Simpson RM, Wells A, Thomas D, Stephens P, Steadman R, Phillips A.

Am J Pathol. 2010 Mar;176(3):1215-28. doi: 10.2353/ajpath.2010.090802.

10.
11.

Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure.

Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA.

Am J Pathol. 2010 Jan;176(1):98-107. doi: 10.2353/ajpath.2010.090283.

12.

Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts.

Mori Y, Ishida W, Bhattacharyya S, Li Y, Platanias LC, Varga J.

Arthritis Rheum. 2004 Dec;50(12):4008-21.

13.

Transforming growth factor-beta- and Activin-Smad signaling pathways are activated at distinct maturation stages of the thymopoeisis.

Rosendahl A, Speletas M, Leandersson K, Ivars F, Sideras P.

Int Immunol. 2003 Dec;15(12):1401-14.

14.

Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice.

Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB, van der Kraan PM.

J Immunol. 2009 Jun 15;182(12):7937-45. doi: 10.4049/jimmunol.0803991. Erratum in: J Immunol. 2010 Aug 15;185(4):2629.

15.

Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways.

Pannu J, Nakerakanti S, Smith E, ten Dijke P, Trojanowska M.

J Biol Chem. 2007 Apr 6;282(14):10405-13.

16.

Inducible lineage-specific deletion of TbetaRII in fibroblasts defines a pivotal regulatory role during adult skin wound healing.

Denton CP, Khan K, Hoyles RK, Shiwen X, Leoni P, Chen Y, Eastwood M, Abraham DJ.

J Invest Dermatol. 2009 Jan;129(1):194-204. doi: 10.1038/jid.2008.171.

17.

Fibroblast-specific expression of a kinase-deficient type II transforming growth factor beta (TGFbeta) receptor leads to paradoxical activation of TGFbeta signaling pathways with fibrosis in transgenic mice.

Denton CP, Zheng B, Evans LA, Shi-wen X, Ong VH, Fisher I, Lazaridis K, Abraham DJ, Black CM, de Crombrugghe B.

J Biol Chem. 2003 Jul 4;278(27):25109-19.

18.

Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other's signaling and stability.

Porsch H, Mehić M, Olofsson B, Heldin P, Heldin CH.

J Biol Chem. 2014 Jul 11;289(28):19747-57. doi: 10.1074/jbc.M114.547273.

19.

The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis.

Plaas A, Velasco J, Gorski DJ, Li J, Cole A, Christopherson K, Sandy JD.

Osteoarthritis Cartilage. 2011 Sep;19(9):1081-90. doi: 10.1016/j.joca.2011.05.003. Review.

20.

Glucocorticoids recruit Tgfbr3 and Smad1 to shift transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis to the Acvrl1/Smad1 axis in lung fibroblasts.

Schwartze JT, Becker S, Sakkas E, Wujak ŁA, Niess G, Usemann J, Reichenberger F, Herold S, Vadász I, Mayer K, Seeger W, Morty RE.

J Biol Chem. 2014 Feb 7;289(6):3262-75. doi: 10.1074/jbc.M113.541052.

Items per page

Supplemental Content

Support Center