Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Characterization of ductal carcinoma in situ on diffusion weighted breast MRI.

Rahbar H, Partridge SC, Eby PR, Demartini WB, Gutierrez RL, Peacock S, Lehman CD.

Eur Radiol. 2011 Sep;21(9):2011-9. doi: 10.1007/s00330-011-2140-4. Epub 2011 May 12.

PMID:
21562806
2.

Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study.

Iima M, Le Bihan D, Okumura R, Okada T, Fujimoto K, Kanao S, Tanaka S, Fujimoto M, Sakashita H, Togashi K.

Radiology. 2011 Aug;260(2):364-72. doi: 10.1148/radiol.11101892. Epub 2011 Jun 1.

PMID:
21633054
3.

In vivo assessment of ductal carcinoma in situ grade: a model incorporating dynamic contrast-enhanced and diffusion-weighted breast MR imaging parameters.

Rahbar H, Partridge SC, Demartini WB, Gutierrez RL, Allison KH, Peacock S, Lehman CD.

Radiology. 2012 May;263(2):374-82. doi: 10.1148/radiol.12111368.

4.

Evaluation of Apparent Diffusion Coefficient to Predict Grade, Microinvasion, and Invasion in Ductal Carcinoma In Situ of the Breast.

Hussein H, Chung C, Moshonov H, Miller N, Kulkarni SR, Scaranelo AM.

Acad Radiol. 2015 Dec;22(12):1483-8. doi: 10.1016/j.acra.2015.08.004. Epub 2015 Sep 26.

PMID:
26391856
5.

The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors.

Park MJ, Cha ES, Kang BJ, Ihn YK, Baik JH.

Korean J Radiol. 2007 Sep-Oct;8(5):390-6.

6.

Intratumoral metabolic heterogeneity predicts invasive components in breast ductal carcinoma in situ.

Yoon HJ, Kim Y, Kim BS.

Eur Radiol. 2015 Dec;25(12):3648-58. doi: 10.1007/s00330-015-3761-9. Epub 2015 Jun 11.

PMID:
26063655
7.

Detection of invasive components in cases of breast ductal carcinoma in situ on biopsy by using apparent diffusion coefficient MR parameters.

Mori N, Ota H, Mugikura S, Takasawa C, Tominaga J, Ishida T, Watanabe M, Takase K, Takahashi S.

Eur Radiol. 2013 Oct;23(10):2705-12. doi: 10.1007/s00330-013-2902-2. Epub 2013 Jun 4.

PMID:
23732688
8.

Histogram analysis of volume-based apparent diffusion coefficient in breast cancer.

Park GE, Kim SH, Kim EJ, Kang BJ, Park MS.

Acta Radiol. 2017 Nov;58(11):1294-1302. doi: 10.1177/0284185117694507. Epub 2017 Feb 27.

PMID:
28273747
9.

Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value.

Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD.

AJR Am J Roentgenol. 2009 Dec;193(6):1716-22. doi: 10.2214/AJR.08.2139.

PMID:
19933670
10.

Diffusion-weighted imaging (b value = 1500 s/mm(2)) is useful to decrease false-positive breast cancer cases due to fibrocystic changes.

Ochi M, Kuroiwa T, Sunami S, Murakami J, Miyahara S, Nagaie T, Oya M, Yabuuchi H, Hatakenaka M.

Breast Cancer. 2013 Apr;20(2):137-44. doi: 10.1007/s12282-011-0319-9. Epub 2011 Dec 10.

PMID:
22161277
11.

Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI.

Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD.

J Magn Reson Imaging. 2010 Mar;31(3):562-70. doi: 10.1002/jmri.22078.

PMID:
20187198
12.

Diffusion-weighted imaging with fat suppression using short-tau inversion recovery: Clinical utility for diagnosis of breast lesions.

Ouyang Z, Ouyang Y, Zhu M, Lu Y, Zhang Z, Shi J, Li X, Ren G.

Clin Radiol. 2014 Aug;69(8):e337-44. doi: 10.1016/j.crad.2014.04.004. Epub 2014 May 16.

PMID:
24837698
13.

Diagnostic performance of ADC for Non-mass-like breast lesions on MR imaging.

Imamura T, Isomoto I, Sueyoshi E, Yano H, Uga T, Abe K, Hayashi T, Honda S, Yamaguchi T, Uetani M.

Magn Reson Med Sci. 2010;9(4):217-25.

14.

Optimization of apparent diffusion coefficient measured by diffusion-weighted MRI for diagnosis of breast lesions presenting as mass and non-mass-like enhancement.

Cheng L, Bai Y, Zhang J, Liu M, Li X, Zhang A, Zhang X, Ma L.

Tumour Biol. 2013 Jun;34(3):1537-45. doi: 10.1007/s13277-013-0682-6. Epub 2013 Feb 10.

PMID:
23397543
15.

Diffusion-weighted imaging of breast tumours at 3 Tesla and 7 Tesla: a comparison.

Gruber S, Minarikova L, Pinker K, Zaric O, Chmelik M, Strasser B, Baltzer P, Helbich T, Trattnig S, Bogner W.

Eur Radiol. 2016 May;26(5):1466-73. doi: 10.1007/s00330-015-3947-1. Epub 2015 Aug 27.

PMID:
26310582
16.

Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ.

Bickel H, Pinker-Domenig K, Bogner W, Spick C, Bagó-Horváth Z, Weber M, Helbich T, Baltzer P.

Invest Radiol. 2015 Feb;50(2):95-100. doi: 10.1097/RLI.0000000000000104.

PMID:
25333308
17.

Assessment of tumor morphology on diffusion-weighted (DWI) breast MRI: Diagnostic value of reduced field of view DWI.

Barentsz MW, Taviani V, Chang JM, Ikeda DM, Miyake KK, Banerjee S, van den Bosch MA, Hargreaves BA, Daniel BL.

J Magn Reson Imaging. 2015 Dec;42(6):1656-65. doi: 10.1002/jmri.24929. Epub 2015 Apr 24.

18.

Breast DWI at 3 T: influence of the fat-suppression technique on image quality and diagnostic performance.

Nogueira L, Brandão S, Nunes RG, Ferreira HA, Loureiro J, Ramos I.

Clin Radiol. 2015 Mar;70(3):286-94. doi: 10.1016/j.crad.2014.11.012. Epub 2014 Dec 30.

PMID:
25555315
19.

Preoperative clinicopathologic factors and breast magnetic resonance imaging features can predict ductal carcinoma in situ with invasive components.

Lee CW, Wu HK, Lai HW, Wu WP, Chen ST, Chen DR, Chen CJ, Kuo SJ.

Eur J Radiol. 2016 Apr;85(4):780-9. doi: 10.1016/j.ejrad.2015.12.027. Epub 2016 Jan 2.

PMID:
26971424
20.

Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI.

Liu C, Liang C, Liu Z, Zhang S, Huang B.

Eur J Radiol. 2013 Dec;82(12):e782-9. doi: 10.1016/j.ejrad.2013.08.006. Epub 2013 Aug 13.

PMID:
24034833

Supplemental Content

Support Center