Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 198

1.

Deciphering the rhizosphere microbiome for disease-suppressive bacteria.

Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM.

Science. 2011 May 27;332(6033):1097-100. doi: 10.1126/science.1203980. Epub 2011 May 5.

2.

Fungal invasion of the rhizosphere microbiome.

Chapelle E, Mendes R, Bakker PA, Raaijmakers JM.

ISME J. 2016 Jan;10(1):265-8. doi: 10.1038/ismej.2015.82. Epub 2015 May 29.

3.

Selective progressive response of soil microbial community to wild oat roots.

DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK.

ISME J. 2009 Feb;3(2):168-78. doi: 10.1038/ismej.2008.103. Epub 2008 Nov 13.

PMID:
19005498
4.

Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease.

Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marecková M, Grundmann GL, Moënne-Loccoz Y.

ISME J. 2009 Oct;3(10):1127-38. doi: 10.1038/ismej.2009.61. Epub 2009 Jun 25.

PMID:
19554036
5.

Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture.

Sanguin H, Sarniguet A, Gazengel K, Moënne-Loccoz Y, Grundmann GL.

New Phytol. 2009 Nov;184(3):694-707. doi: 10.1111/j.1469-8137.2009.03010.x. Epub 2009 Sep 1.

7.

In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).

Errakhi R, Lebrihi A, Barakate M.

J Appl Microbiol. 2009 Aug;107(2):672-81. doi: 10.1111/j.1365-2672.2009.04232.x. Epub 2009 Mar 16.

8.

Soil suppressiveness to Rhizoctonia solani and microbial diversity.

Bakker Y, Van Loon FM, Schneider JH.

Commun Agric Appl Biol Sci. 2005;70(3):29-33.

PMID:
16637155
9.

Microbial and biochemical basis of a Fusarium wilt-suppressive soil.

Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crüsemann M, Bok Lee Y, Kim JF, Giaever G, Nislow C, Moore BS, Thomashow LS, Weller DM, Kwak YS.

ISME J. 2016 Jan;10(1):119-29. doi: 10.1038/ismej.2015.95. Epub 2015 Jun 9.

10.

Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P.

Nature. 2012 Aug 2;488(7409):91-5. doi: 10.1038/nature11336.

PMID:
22859207
11.

Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices.

Tan Y, Cui Y, Li H, Kuang A, Li X, Wei Y, Ji X.

J Basic Microbiol. 2017 Apr;57(4):337-344. doi: 10.1002/jobm.201600464. Epub 2017 Jan 6.

PMID:
28060404
12.

Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

Navarro-Noya YE, Jan-Roblero J, González-Chávez Mdel C, Hernández-Gama R, Hernández-Rodríguez C.

Antonie Van Leeuwenhoek. 2010 May;97(4):335-49. doi: 10.1007/s10482-010-9413-9. Epub 2010 Jan 20.

PMID:
20084459
13.

Defining the core Arabidopsis thaliana root microbiome.

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL.

Nature. 2012 Aug 2;488(7409):86-90. doi: 10.1038/nature11237.

14.

Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression.

van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R.

Ecol Lett. 2016 Apr;19(4):375-82. doi: 10.1111/ele.12567. Epub 2016 Feb 1.

PMID:
26833547
15.

Abiotic factors shape microbial diversity in Sonoran Desert soils.

Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K.

Appl Environ Microbiol. 2012 Nov;78(21):7527-37. doi: 10.1128/AEM.01459-12. Epub 2012 Aug 10.

16.

Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco.

Almario J, Muller D, Défago G, Moënne-Loccoz Y.

Environ Microbiol. 2014 Jul;16(7):1949-60. doi: 10.1111/1462-2920.12459. Epub 2014 Apr 17. Review.

PMID:
24650207
17.

Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis.

Haldar S, Sengupta S.

J Basic Microbiol. 2015 Jul;55(7):922-8. doi: 10.1002/jobm.201400683. Epub 2015 Jan 9.

PMID:
25572408
18.

Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches.

Lee SA, Park J, Chu B, Kim JM, Joa JH, Sang MK, Song J, Weon HY.

J Microbiol. 2016 Dec;54(12):823-831. Epub 2016 Nov 26.

PMID:
27888459
19.

Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil.

Gremion F, Chatzinotas A, Harms H.

Environ Microbiol. 2003 Oct;5(10):896-907. Erratum in: Environ Microbiol. 2004 Jun;6(6):651-2.

PMID:
14510843
20.

A procedure for the metagenomics exploration of disease-suppressive soils.

van Elsas JD, Speksnijder AJ, van Overbeek LS.

J Microbiol Methods. 2008 Dec;75(3):515-22. doi: 10.1016/j.mimet.2008.08.004. Epub 2008 Aug 23.

PMID:
18778739

Supplemental Content

Support Center