Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Peptide-directed highly selective targeting of pulmonary arterial hypertension.

Urakami T, Järvinen TA, Toba M, Sawada J, Ambalavanan N, Mann D, McMurtry I, Oka M, Ruoslahti E, Komatsu M.

Am J Pathol. 2011 Jun;178(6):2489-95. doi: 10.1016/j.ajpath.2011.02.032.

2.

A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension.

Toba M, Alzoubi A, O'Neill K, Abe K, Urakami T, Komatsu M, Alvarez D, Järvinen TA, Mann D, Ruoslahti E, McMurtry IF, Oka M.

Am J Pathol. 2014 Feb;184(2):369-75. doi: 10.1016/j.ajpath.2013.10.008.

3.

Severe pulmonary arterial hypertension induced by SU5416 and ovalbumin immunization.

Mizuno S, Farkas L, Al Husseini A, Farkas D, Gomez-Arroyo J, Kraskauskas D, Nicolls MR, Cool CD, Bogaard HJ, Voelkel NF.

Am J Respir Cell Mol Biol. 2012 Nov;47(5):679-87. doi: 10.1165/rcmb.2012-0077OC.

PMID:
22842496
4.

Inhibition of vascular endothelial growth factor receptor under hypoxia causes severe, human-like pulmonary arterial hypertension in mice: potential roles of interleukin-6 and endothelin.

Van Hung T, Emoto N, Vignon-Zellweger N, Nakayama K, Yagi K, Suzuki Y, Hirata K.

Life Sci. 2014 Nov 24;118(2):313-28. doi: 10.1016/j.lfs.2013.12.215.

5.

Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression of monocrotaline-induced pulmonary artery hypertension.

Chen L, Nakano K, Kimura S, Matoba T, Iwata E, Miyagawa M, Tsujimoto H, Nagaoka K, Kishimoto J, Sunagawa K, Egashira K.

Hypertension. 2011 Feb;57(2):343-50. doi: 10.1161/HYPERTENSIONAHA.110.157032.

6.

Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology.

Meloche J, Courchesne A, Barrier M, Carter S, Bisserier M, Paulin R, Lauzon-Joset JF, Breuils-Bonnet S, Tremblay É, Biardel S, Racine C, Courture C, Bonnet P, Majka SM, Deshaies Y, Picard F, Provencher S, Bonnet S.

J Am Heart Assoc. 2013 Jan 16;2(1):e005157. doi: 10.1161/JAHA.112.005157.

7.

Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension.

Kuc RE, Carlebur M, Maguire JJ, Yang P, Long L, Toshner M, Morrell NW, Davenport AP.

Life Sci. 2014 Nov 24;118(2):391-6. doi: 10.1016/j.lfs.2014.02.020.

8.

Fluoxetine protects against monocrotaline-induced pulmonary arterial hypertension: potential roles of induction of apoptosis and upregulation of Kv1.5 channels in rats.

Zhai FG, Zhang XH, Wang HL.

Clin Exp Pharmacol Physiol. 2009 Aug;36(8):850-6. doi: 10.1111/j.1440-1681.2009.05168.x.

PMID:
19298536
9.

Terguride ameliorates monocrotaline-induced pulmonary hypertension in rats.

Dumitrascu R, Kulcke C, Königshoff M, Kouri F, Yang X, Morrell N, Ghofrani HA, Weissmann N, Reiter R, Seeger W, Grimminger F, Eickelberg O, Schermuly RT, Pullamsetti SS.

Eur Respir J. 2011 May;37(5):1104-18. doi: 10.1183/09031936.00126010.

10.
12.

Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension.

Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA, Erzurum SC, Chun HJ.

Circulation. 2015 Jan 13;131(2):190-9. doi: 10.1161/CIRCULATIONAHA.114.013339.

13.

The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted.

Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED.

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11418-23.

14.

A novel murine model of severe pulmonary arterial hypertension.

Ciuclan L, Bonneau O, Hussey M, Duggan N, Holmes AM, Good R, Stringer R, Jones P, Morrell NW, Jarai G, Walker C, Westwick J, Thomas M.

Am J Respir Crit Care Med. 2011 Nov 15;184(10):1171-82. doi: 10.1164/rccm.201103-0412OC.

PMID:
21868504
15.

ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats.

Li G, Liu Y, Zhu Y, Liu A, Xu Y, Li X, Li Z, Su J, Sun L.

Lung. 2013 Aug;191(4):327-36. doi: 10.1007/s00408-013-9470-8.

PMID:
23652350
16.

Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension.

Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM.

FASEB J. 2001 Feb;15(2):427-38.

PMID:
11156958
17.

Statin therapy, alone or with rapamycin, does not reverse monocrotaline pulmonary arterial hypertension: the rapamcyin-atorvastatin-simvastatin study.

McMurtry MS, Bonnet S, Michelakis ED, Bonnet S, Haromy A, Archer SL.

Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L933-40.

18.

The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension.

Sakao S, Tatsumi K.

Respiration. 2011;81(3):253-61. doi: 10.1159/000322011. Review.

PMID:
21116108
19.

Amlodipine prevents monocrotaline-induced pulmonary arterial hypertension and prolongs survival in rats independent of blood pressure lowering.

Mawatari E, Hongo M, Sakai A, Terasawa F, Takahashi M, Yazaki Y, Kinoshita O, Ikeda U.

Clin Exp Pharmacol Physiol. 2007 Jul;34(7):594-600.

PMID:
17581214
20.

Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline.

Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R, Denby L, Dempsie Y, Long L, Morrell NW, Baker AH.

Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):716-23. doi: 10.1161/ATVBAHA.109.202028.

Supplemental Content

Support Center