Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.
2.

Analysis of the key active subsites of glycoside hydrolase 13 family members.

Kumar V.

Carbohydr Res. 2010 May 7;345(7):893-8. doi: 10.1016/j.carres.2010.02.007. Epub 2010 Feb 13.

PMID:
20227065
3.

Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57.

Blesák K, Janeček Š.

Microbiology. 2013 Dec;159(Pt 12):2584-93. doi: 10.1099/mic.0.071084-0. Epub 2013 Oct 9.

PMID:
24109595
5.

Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57.

Blesák K, Janeček S.

Extremophiles. 2012 May;16(3):497-506. doi: 10.1007/s00792-012-0449-9. Epub 2012 Apr 22.

PMID:
22527043
6.

Domain evolution in enzymes of the neopullulanase subfamily.

Kuchtová A, Janeček Š.

Microbiology. 2016 Dec;162(12):2099-2115. doi: 10.1099/mic.0.000390. Epub 2016 Nov 1.

PMID:
27902421
7.

Conversion of a cyclodextrin glucanotransferase into an alpha-amylase: assessment of directed evolution strategies.

Kelly RM, Leemhuis H, Dijkhuizen L.

Biochemistry. 2007 Oct 2;46(39):11216-22. Epub 2007 Sep 8.

PMID:
17824673
8.

Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases.

Majzlová K, Pukajová Z, Janeček S.

Carbohydr Res. 2013 Feb 15;367:48-57. doi: 10.1016/j.carres.2012.11.022. Epub 2012 Dec 3.

PMID:
23313816
9.

Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family.

Janeček Š, Gabriško M.

Cell Mol Life Sci. 2016 Jul;73(14):2707-25. doi: 10.1007/s00018-016-2246-6. Epub 2016 May 6. Review.

PMID:
27154042
10.

Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8.

Kaper T, Leemhuis H, Uitdehaag JC, van der Veen BA, Dijkstra BW, van der Maarel MJ, Dijkhuizen L.

Biochemistry. 2007 May 1;46(17):5261-9. Epub 2007 Apr 4.

PMID:
17407266
11.

Distribution of glucan-branching enzymes among prokaryotes.

Suzuki E, Suzuki R.

Cell Mol Life Sci. 2016 Jul;73(14):2643-60. doi: 10.1007/s00018-016-2243-9. Epub 2016 May 3. Review.

PMID:
27141939
12.
13.

Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.

Santos CR, Tonoli CC, Trindade DM, Betzel C, Takata H, Kuriki T, Kanai T, Imanaka T, Arni RK, Murakami MT.

Proteins. 2011 Feb;79(2):547-57. doi: 10.1002/prot.22902.

PMID:
21104698
14.
15.

Identification of the conserved spatial position of key active-site atoms in glycoside hydrolase 13 family members.

Kumar V.

Carbohydr Res. 2010 Jul 19;345(11):1564-9. doi: 10.1016/j.carres.2010.04.027. Epub 2010 Jun 16.

PMID:
20557875
16.
17.

Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins.

Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B.

Protein Eng Des Sel. 2006 Dec;19(12):555-62. Epub 2006 Nov 2.

PMID:
17085431
18.

Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.

Leemhuis H, Kragh KM, Dijkstra BW, Dijkhuizen L.

J Biotechnol. 2003 Aug 15;103(3):203-12.

PMID:
12890607
19.

Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives.

Graebin NG, Schöffer Jda N, Andrades Dd, Hertz PF, Ayub MA, Rodrigues RC.

Molecules. 2016 Aug 17;21(8). pii: E1074. doi: 10.3390/molecules21081074. Review.

20.

Purification and characterization of a novel intracellular α-amylase with a wide variety of substrates hydrolysis and transglycosylation activity from Paenibacillus sp. SSG-1.

Xu Q, Cao Y, Li X, Liu L, Qin S, Wang Y, Cao Y, Xu H, Qiao D.

Protein Expr Purif. 2016 Apr 20. pii: S1046-5928(16)30054-7. doi: 10.1016/j.pep.2016.04.007. [Epub ahead of print]

PMID:
27108054

Supplemental Content

Support Center