Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Brønsted-Evans-Polanyi relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

Assary RS, Broadbelt LJ, Curtiss LA.

J Mol Model. 2012 Jan;18(1):145-50. doi: 10.1007/s00894-011-1062-z. Epub 2011 Apr 27.

PMID:
21523538
2.

Computational screening of novel thiamine-catalyzed decarboxylation reactions of 2-keto acids.

Assary RS, Broadbelt LJ.

Bioprocess Biosyst Eng. 2011 Mar;34(3):375-88. doi: 10.1007/s00449-010-0481-z.

PMID:
21061135
3.

Effect of the Exchange-Correlation Potential on the Transferability of Brønsted-Evans-Polanyi Relationships in Heterogeneous Catalysis.

Fajín JL, Viñes F, D S Cordeiro MN, Illas F, Gomes JR.

J Chem Theory Comput. 2016 May 10;12(5):2121-6. doi: 10.1021/acs.jctc.6b00168. Epub 2016 Apr 29.

4.

Thiamine pyrophosphate-catalyzed enzymatic decarboxylation of -oxo acids.

Ullrich J, Ostrovsky YM, Eyzaguirre J, Holzer H.

Vitam Horm. 1970;28:365-98. Review. No abstract available.

PMID:
4946807
5.
6.

Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis.

Müller M, Gocke D, Pohl M.

FEBS J. 2009 Jun;276(11):2894-904. doi: 10.1111/j.1742-4658.2009.07017.x. Epub 2009 Apr 23. Review.

7.

Reversibility and diffusion in mandelythiamin decarboxylation. Searching dynamical effects in decarboxylation reactions.

Roca M, Pascual-Ahuir JL, Tuñón I.

J Am Chem Soc. 2012 Jun 27;134(25):10509-14. doi: 10.1021/ja3026455. Epub 2012 Jun 19.

PMID:
22668129
8.

A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces.

Liu B, Greeley J.

Phys Chem Chem Phys. 2013 May 7;15(17):6475-85. doi: 10.1039/c3cp44088e.

PMID:
23529559
9.

Tandem Rh-catalysis: decarboxylative β-keto acid and alkyne cross-coupling.

Cruz FA, Chen Z, Kurtoic SI, Dong VM.

Chem Commun (Camb). 2016 Apr 30;52(34):5836-9. doi: 10.1039/c6cc02522f. Epub 2016 Apr 4.

10.

Decarboxylation, CO2 and the reversion problem.

Kluger R.

Acc Chem Res. 2015 Nov 17;48(11):2843-9. doi: 10.1021/acs.accounts.5b00306. Epub 2015 Nov 3.

PMID:
26528892
11.

Phosphate binding energy and catalysis by small and large molecules.

Morrow JR, Amyes TL, Richard JP.

Acc Chem Res. 2008 Apr;41(4):539-48. doi: 10.1021/ar7002013. Epub 2008 Feb 23.

12.

Decarboxylative acylation of indolines with α-keto acids under palladium catalysis: a facile strategy for the synthesis of 7-substituted indoles.

Kim M, Mishra NK, Park J, Han S, Shin Y, Sharma S, Lee Y, Lee EK, Kwak JH, Kim IS.

Chem Commun (Camb). 2014 Nov 25;50(91):14249-52. doi: 10.1039/c4cc06929c.

PMID:
25284736
13.

Decarboxylation without CO2: why bicarbonate forms directly as trichloroacetate is converted to chloroform.

Howe GW, Kluger R.

J Org Chem. 2014 Nov 21;79(22):10972-80. doi: 10.1021/jo501990u. Epub 2014 Nov 7.

PMID:
25340631
14.

Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: a strategy for the preparation of chalcones.

Zhang N, Yang D, Wei W, Yuan L, Nie F, Tian L, Wang H.

J Org Chem. 2015 Mar 20;80(6):3258-63. doi: 10.1021/jo502642n. Epub 2015 Feb 27.

PMID:
25699630
15.

Visible-light-mediated decarboxylation/oxidative amidation of α-keto acids with amines under mild reaction conditions using O(2).

Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A.

Angew Chem Int Ed Engl. 2014 Jan 7;53(2):502-6. doi: 10.1002/anie.201308614. Epub 2013 Nov 24.

PMID:
24272969
16.

Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.

O'Hair RA, Rijs NJ.

Acc Chem Res. 2015 Feb 17;48(2):329-40. doi: 10.1021/ar500377u. Epub 2015 Jan 16. Review.

PMID:
25594228
17.
18.

Isotope effect, mechanism, and origin of catalysis in the decarboxylation of mandelylthiamin.

Gonzalez-James OM, Singleton DA.

J Am Chem Soc. 2010 May 26;132(20):6896-7. doi: 10.1021/ja101775s.

19.

Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.

Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Nørskov JK, Mavrikakis M.

J Am Chem Soc. 2009 Apr 29;131(16):5809-15. doi: 10.1021/ja8099322.

PMID:
19334787
20.

Supplemental Content

Support Center