Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 145

1.

Phosphorous magnetic resonance spectroscopy-based skeletal muscle bioenergetic studies in subclinical hypothyroidism.

Rana P, Sripathy G, Varshney A, Kumar P, Devi MM, Marwaha RK, Tripathi RP, Khushu S.

J Endocrinol Invest. 2012 Feb;35(2):129-34. doi: 10.3275/7676. Epub 2011 Apr 20.

PMID:
21508663
2.

Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study.

Khushu S, Rana P, Sekhri T, Sripathy G, Tripathi RP.

Magn Reson Imaging. 2010 Jun;28(5):683-9. doi: 10.1016/j.mri.2010.01.006. Epub 2010 Mar 23.

PMID:
20332062
3.

Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy.

Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T.

Chest. 1992 Dec;102(6):1716-22.

PMID:
1446478
4.

A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy.

Ryan TE, Southern WM, Reynolds MA, McCully KK.

J Appl Physiol (1985). 2013 Dec;115(12):1757-66. doi: 10.1152/japplphysiol.00835.2013. Epub 2013 Oct 17.

5.

High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).

Schocke MF, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, Jaschke WR, Greiner A.

Magn Reson Imaging. 2004 Jan;22(1):109-15.

PMID:
14972400
6.

Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study.

Rana P, Varshney A, Devi MM, Kumar P, Khushu S.

Indian J Biochem Biophys. 2008 Aug;45(4):263-8.

PMID:
18788477
7.

Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease. Correlation with clinical and angiographic findings and comparison with healthy volunteers.

Schunk K, Romaneehsen B, Mildenberger P, Kersjes W, Schadmand-Fischer S, Thelen M.

Invest Radiol. 1997 Nov;32(11):651-9.

PMID:
9387051
8.

Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorus magnetic resonance spectroscopy.

Kaminsky P, Robin-Lherbier B, Brunotte F, Escanye JM, Walker P, Klein M, Robert J, Duc M.

J Clin Endocrinol Metab. 1992 Jan;74(1):124-9.

PMID:
1727810
9.
10.

High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy.

Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, Jaschke WR, Schocke MF.

J Vasc Surg. 2006 May;43(5):978-86.

11.

Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T.

Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, Tušek Jelenc M, Bogner W, Meyerspeer M, Ukropec J, Frollo I, Ukropcová B, Trattnig S, Krššák M.

NMR Biomed. 2014 Nov;27(11):1346-52. doi: 10.1002/nbm.3196. Epub 2014 Sep 9.

PMID:
25199902
12.

Slower recovery of muscle phosphocreatine in malignant hyperthermia-susceptible individuals assessed by 31P-MR spectroscopy.

Monsieurs K, Heytens L, Kloeck C, Martin JJ, Wuyts F, Bossaert L.

J Neurol. 1997 Oct;244(10):651-6.

PMID:
9402543
13.

Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.

Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD.

J Vasc Surg. 2000 May;31(5):944-52.

14.

High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis.

Greiner A, Esterhammer R, Bammer D, Messner H, Kremser C, Jaschke WR, Fraedrich G, Schocke MF.

Eur J Appl Physiol. 2007 Mar;99(5):519-31. Epub 2007 Jan 6.

PMID:
17206438
15.

Phosphocreatine resynthesis during recovery in different muscles of the exercising leg by 31P-MRS.

Yoshida T, Abe D, Fukuoka Y.

Scand J Med Sci Sports. 2013 Oct;23(5):e313-9. doi: 10.1111/sms.12081. Epub 2013 May 13.

PMID:
23662804
16.

Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin.

Nachbauer W, Boesch S, Schneider R, Eigentler A, Wanschitz J, Poewe W, Schocke M.

PLoS One. 2013 Jul 29;8(7):e69229. doi: 10.1371/journal.pone.0069229. Print 2013.

17.

Exercising calf muscle T₂∗ changes correlate with pH, PCr recovery and maximum oxidative phosphorylation.

Schmid AI, Schewzow K, Fiedler GB, Goluch S, Laistler E, Wolzt M, Moser E, Meyerspeer M.

NMR Biomed. 2014 May;27(5):553-60. doi: 10.1002/nbm.3092. Epub 2014 Mar 9.

18.
19.

Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease.

Isbell DC, Berr SS, Toledano AY, Epstein FH, Meyer CH, Rogers WJ, Harthun NL, Hagspiel KD, Weltman A, Kramer CM.

J Am Coll Cardiol. 2006 Jun 6;47(11):2289-95. Epub 2006 May 15.

20.

[Diabetic foot syndrome: importance of calf muscles MR spectroscopy in the assessment of limb ischemia and effect of revascularization].

Němcová A, Dubský M, Jirkovská A, Šedivý P, Drobný M, Hájek M, Dezortová M, Bém R, Fejfarová V, Pyšná A.

Vnitr Lek. Spring 2017;63(4):236-241. Czech.

PMID:
28520446

Supplemental Content

Support Center