Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid.

Sung PH, Huang FC, Do YY, Huang PL.

J Agric Food Chem. 2011 May 11;59(9):4637-43. doi: 10.1021/jf200259n. Epub 2011 Apr 19.

PMID:
21504162
2.

Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis.

Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J.

FEBS Lett. 2001 Nov 16;508(2):215-20.

4.

Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis.

Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L.

Biochim Biophys Acta. 2007 Feb;1769(2):139-48. Epub 2007 Jan 30.

PMID:
17321612
5.

Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells.

Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J.

Planta Med. 2005 Jun;71(6):572-4.

PMID:
15971133
6.

Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production.

Wang CT, Liu H, Gao XS, Zhang HX.

Plant Cell Rep. 2010 Aug;29(8):887-94. doi: 10.1007/s00299-010-0874-0. Epub 2010 Jun 10.

PMID:
20535474
7.

Characterization of a polyclonal antiserum against the monoterpene monooxygenase, geraniol 10-hydroxylase from Catharanthus roseus.

Canto-Canché BB, Meijer AH, Collu G, Verpoorte R, Loyola-Vargas VM.

J Plant Physiol. 2005 Apr;162(4):393-402.

PMID:
15900881
8.

Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.

Kumar K, Kumar SR, Dwivedi V, Rai A, Shukla AK, Shanker K, Nagegowda DA.

Plant Sci. 2015 Oct;239:56-66. doi: 10.1016/j.plantsci.2015.07.007. Epub 2015 Jul 19.

PMID:
26398791
9.

The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots.

Peebles CA, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY.

Metab Eng. 2011 Mar;13(2):234-40. doi: 10.1016/j.ymben.2010.11.005. Epub 2010 Dec 7.

PMID:
21144909
10.

Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus.

Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V.

J Plant Physiol. 2011 Apr 15;168(6):549-57. doi: 10.1016/j.jplph.2010.08.018. Epub 2010 Nov 2.

PMID:
21047699
11.

A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus.

Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc'h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O'Connor SE, Courdavault V.

Plant Physiol. 2013 Dec;163(4):1792-803. doi: 10.1104/pp.113.222828. Epub 2013 Oct 9.

12.

Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics.

Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K.

PLoS One. 2012;7(8):e43038. doi: 10.1371/journal.pone.0043038. Epub 2012 Aug 20.

13.

Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus.

Poutrain P, Guirimand G, Mahroug S, Burlat V, Melin C, Ginis O, Oudin A, Giglioli-Guivarc'h N, Pichon O, Courdavault V.

Plant Biol (Stuttg). 2011 Jan;13(1):36-41. doi: 10.1111/j.1438-8677.2010.00325.x.

PMID:
21143723
14.

Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase.

Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V.

Plant Cell Rep. 2009 Aug;28(8):1215-34. doi: 10.1007/s00299-009-0722-2. Epub 2009 Jun 6.

PMID:
19504099
15.

Cytochrome P-450 in plant/insect interactions: geraniol 10-hydroxylase and the biosynthesis of iridoid monoterpenoids.

Hallahan DL, West JM.

Drug Metabol Drug Interact. 1995;12(3-4):369-82. Review.

PMID:
8820862
16.

Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway.

Höfer R, Dong L, André F, Ginglinger JF, Lugan R, Gavira C, Grec S, Lang G, Memelink J, Van der Krol S, Bouwmeester H, Werck-Reichhart D.

Metab Eng. 2013 Nov;20:221-32. doi: 10.1016/j.ymben.2013.08.001. Epub 2013 Aug 7.

PMID:
23933465
17.

Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida.

Huang FC, Sung PH, Do YY, Huang PL.

Plant Sci. 2012 Jul;190:16-23. doi: 10.1016/j.plantsci.2012.03.007. Epub 2012 Mar 23.

PMID:
22608516
18.
19.

7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V.

Phytochemistry. 2014 May;101:23-31. doi: 10.1016/j.phytochem.2014.02.009. Epub 2014 Mar 1.

PMID:
24594312

Supplemental Content

Support Center