Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation.

Sánchez-Camacho C, Ortega JA, Ocaña I, Alcántara S, Bovolenta P.

Dev Neurobiol. 2011 May;71(5):337-50. doi: 10.1002/dneu.20865.

2.
3.

Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice.

Shu T, Butz KG, Plachez C, Gronostajski RM, Richards LJ.

J Neurosci. 2003 Jan 1;23(1):203-12.

4.

Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice.

Piper M, Moldrich RX, Lindwall C, Little E, Barry G, Mason S, Sunn N, Kurniawan ND, Gronostajski RM, Richards LJ.

Neural Dev. 2009 Dec 4;4:43. doi: 10.1186/1749-8104-4-43.

5.
6.

Multiple Slits regulate the development of midline glial populations and the corpus callosum.

Unni DK, Piper M, Moldrich RX, Gobius I, Liu S, Fothergill T, Donahoo AL, Baisden JM, Cooper HM, Richards LJ.

Dev Biol. 2012 May 1;365(1):36-49. doi: 10.1016/j.ydbio.2012.02.004. Epub 2012 Feb 11.

7.

A role for cingulate pioneering axons in the development of the corpus callosum.

Rash BG, Richards LJ.

J Comp Neurol. 2001 May 28;434(2):147-57.

PMID:
11331522
8.

Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo.

Shu T, Sundaresan V, McCarthy MM, Richards LJ.

J Neurosci. 2003 Sep 3;23(22):8176-84.

9.

Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses.

Lent R, Uziel D, Baudrimont M, Fallet C.

J Comp Neurol. 2005 Mar 21;483(4):375-82.

PMID:
15700272
10.

Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain.

Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J, Mori S, Kinsman SL, Richards LJ.

Anat Rec A Discov Mol Cell Evol Biol. 2006 Feb;288(2):191-204.

11.

The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap.

Lavado A, Ware M, Paré J, Cao X.

Development. 2014 Nov;141(21):4182-93. doi: 10.1242/dev.111260.

12.

Differentiation/maturation of neuropeptide Y neurons in the corpus callosum is promoted by brain-derived neurotrophic factor in mouse brain slice cultures.

Yoshimura R, Ito K, Endo Y.

Neurosci Lett. 2009 Feb 6;450(3):262-5. doi: 10.1016/j.neulet.2008.12.010. Epub 2008 Dec 16.

PMID:
19103259
13.

Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain.

Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG, Sundaresan V, Richards LJ.

Development. 2006 Jun;133(11):2243-52.

14.

[Histogenesis of the corpus callosum].

Gelot A, Esperandieu O, Pompidou A.

Neurochirurgie. 1998 May;44(1 Suppl):61-73. Review. French.

PMID:
9757325
15.

Transient cellular structures in developing corpus callosum of the human brain.

Jovanov-Milosević N, Benjak V, Kostović I.

Coll Antropol. 2006 Jun;30(2):375-81.

PMID:
16848154
16.

Identification of candidate genes at the corticoseptal boundary during development.

Shen WB, Plachez C, Mongi AS, Richards LJ.

Gene Expr Patterns. 2006 Jun;6(5):471-81. Epub 2006 Feb 2.

PMID:
16458080
17.

Midline radial glia translocation and corpus callosum formation require FGF signaling.

Smith KM, Ohkubo Y, Maragnoli ME, Rasin MR, Schwartz ML, Sestan N, Vaccarino FM.

Nat Neurosci. 2006 Jun;9(6):787-97. Epub 2006 May 21.

PMID:
16715082
18.
19.

RA-GEF-1 (Rapgef2) is essential for proper development of the midline commissures.

Bilasy SE, Satoh T, Terashima T, Kataoka T.

Neurosci Res. 2011 Nov;71(3):200-9. doi: 10.1016/j.neures.2011.08.004. Epub 2011 Aug 12.

PMID:
21864586
20.

Further tales of the midline.

Chédotal A.

Curr Opin Neurobiol. 2011 Feb;21(1):68-75. doi: 10.1016/j.conb.2010.07.008. Epub 2010 Aug 17. Review.

PMID:
20724139

Supplemental Content

Support Center