Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Hyperoxia accelerates Fas-mediated signaling and apoptosis in the lungs of Legionella pneumophila pneumonia.

Maeda T, Kimura S, Matsumoto T, Tanabe Y, Gejyo F, Yamaguchi K.

BMC Res Notes. 2011 Apr 6;4:107. doi: 10.1186/1756-0500-4-107.

2.

Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis.

Tateda K, Deng JC, Moore TA, Newstead MW, Paine R 3rd, Kobayashi N, Yamaguchi K, Standiford TJ.

J Immunol. 2003 Apr 15;170(8):4209-16.

3.

Role of Toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model.

Fuse ET, Tateda K, Kikuchi Y, Matsumoto T, Gondaira F, Azuma A, Kudoh S, Standiford TJ, Yamaguchi K.

J Med Microbiol. 2007 Mar;56(Pt 3):305-12.

PMID:
17314358
4.

The Fas system confers protection against alveolar disruption in hyperoxia-exposed newborn mice.

Mao Q, Gundavarapu S, Patel C, Tsai A, Luks FI, De Paepe ME.

Am J Respir Cell Mol Biol. 2008 Dec;39(6):717-29. doi: 10.1165/rcmb.2008-0052OC. Epub 2008 Jun 27.

5.

Legionella-induced acute lung injury in the setting of hyperoxia: protective role of tumour necrosis factor-alpha.

Nara C, Tateda K, Matsumoto T, Ohara A, Miyazaki S, Standiford TJ, Yamaguchi K.

J Med Microbiol. 2004 Aug;53(Pt 8):727-33.

PMID:
15272058
6.

Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila.

Asare R, Santic M, Gobin I, Doric M, Suttles J, Graham JE, Price CD, Abu Kwaik Y.

Infect Immun. 2007 Apr;75(4):1933-45. Epub 2007 Jan 29.

7.

Global cellular changes induced by Legionella pneumophila infection of bone marrow-derived macrophages.

Fortier A, Faucher SP, Diallo K, Gros P.

Immunobiology. 2011 Dec;216(12):1274-85. doi: 10.1016/j.imbio.2011.06.008. Epub 2011 Jun 30.

PMID:
21794945
8.

A critical role for Fas/CD-95 dependent signaling pathways in the pathogenesis of hyperoxia-induced brain injury.

Dzietko M, Boos V, Sifringer M, Polley O, Gerstner B, Genz K, Endesfelder S, Börner C, Jacotot E, Chauvier D, Obladen M, Bührer C, Felderhoff-Mueser U.

Ann Neurol. 2008 Dec;64(6):664-73. doi: 10.1002/ana.21516.

PMID:
19107989
9.

Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo.

Pereira MS, Morgantetti GF, Massis LM, Horta CV, Hori JI, Zamboni DS.

J Immunol. 2011 Dec 15;187(12):6447-55. doi: 10.4049/jimmunol.1003784. Epub 2011 Nov 11.

10.

Host-dependent trigger of caspases and apoptosis by Legionella pneumophila.

Santic M, Asare R, Doric M, Abu Kwaik Y.

Infect Immun. 2007 Jun;75(6):2903-13. Epub 2007 Apr 9.

12.

Roles of interleukin-17 in an experimental Legionella pneumophila pneumonia model.

Kimizuka Y, Kimura S, Saga T, Ishii M, Hasegawa N, Betsuyaku T, Iwakura Y, Tateda K, Yamaguchi K.

Infect Immun. 2012 Mar;80(3):1121-7. doi: 10.1128/IAI.05544-11. Epub 2011 Dec 5.

13.

Critical roles of inflammation and apoptosis in improved survival in a model of hyperoxia-induced acute lung injury in Pneumocystis murina-infected mice.

Beck JM, Preston AM, Wilcoxen SE, Morris SB, Sturrock A, Paine R 3rd.

Infect Immun. 2009 Mar;77(3):1053-60. doi: 10.1128/IAI.00967-08. Epub 2009 Jan 5.

14.

Sequential changes of Legionella antigens and bacterial load in the lungs and urines of a mouse model of pneumonia.

Chen Y, Tateda K, Fujita K, Ishii T, Ishii Y, Kimura S, Saga T, Annaka T, Yamada S, Zhao L, Li S, Azuma A, Gemma A, Kudoh S, Yamaguchi K.

Diagn Microbiol Infect Dis. 2010 Mar;66(3):253-60. doi: 10.1016/j.diagmicrobio.2009.11.001.

PMID:
20159373
15.

SQSTM1/p62/A170 regulates the severity of Legionella pneumophila pneumonia by modulating inflammasome activity.

Ohtsuka S, Ishii Y, Matsuyama M, Ano S, Morishima Y, Yanagawa T, Warabi E, Hizawa N.

Eur J Immunol. 2014 Apr;44(4):1084-92. doi: 10.1002/eji.201344091. Epub 2014 Jan 28.

16.

NAIP and Ipaf control Legionella pneumophila replication in human cells.

Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H, N'guessan PD, Günther S, Schmeck B, Hippenstiel S, Flieger A, Suttorp N, Opitz B.

J Immunol. 2008 May 15;180(10):6808-15.

17.

Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila.

Case CL, Shin S, Roy CR.

Infect Immun. 2009 May;77(5):1981-91. doi: 10.1128/IAI.01382-08. Epub 2009 Feb 23.

18.

Role of Fas and Treg cells in fracture healing as characterized in the fas-deficient (lpr) mouse model of lupus.

Al-Sebaei MO, Daukss DM, Belkina AC, Kakar S, Wigner NA, Cusher D, Graves D, Einhorn T, Morgan E, Gerstenfeld LC.

J Bone Miner Res. 2014 Jun;29(6):1478-91. doi: 10.1002/jbmr.2169.

19.

The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation.

Lamkanfi M, Amer A, Kanneganti TD, Muñoz-Planillo R, Chen G, Vandenabeele P, Fortier A, Gros P, Núñez G.

J Immunol. 2007 Jun 15;178(12):8022-7.

20.

Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia.

Tateda K, Moore TA, Deng JC, Newstead MW, Zeng X, Matsukawa A, Swanson MS, Yamaguchi K, Standiford TJ.

J Immunol. 2001 Mar 1;166(5):3355-61.

Supplemental Content

Support Center