Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Dominant cone-rod dystrophy: a mouse model generated by gene targeting of the GCAP1/Guca1a gene.

Buch PK, Mihelec M, Cottrill P, Wilkie SE, Pearson RA, Duran Y, West EL, Michaelides M, Ali RR, Hunt DM.

PLoS One. 2011 Mar 28;6(3):e18089. doi: 10.1371/journal.pone.0018089.

2.

RNAi-mediated gene suppression in a GCAP1(L151F) cone-rod dystrophy mouse model.

Jiang L, Li TZ, Boye SE, Hauswirth WW, Frederick JM, Baehr W.

PLoS One. 2013;8(3):e57676. doi: 10.1371/journal.pone.0057676. Epub 2013 Mar 5.

3.

GCAP1 mutations associated with autosomal dominant cone dystrophy.

Jiang L, Baehr W.

Adv Exp Med Biol. 2010;664:273-82. doi: 10.1007/978-1-4419-1399-9_31. Review.

4.

GUCY2D- or GUCA1A-related autosomal dominant cone-rod dystrophy: is there a phenotypic difference?

Zobor D, Zrenner E, Wissinger B, Kohl S, Jägle H.

Retina. 2014 Aug;34(8):1576-87. doi: 10.1097/IAE.0000000000000129.

PMID:
24875811
5.

A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration.

Nishiguchi KM, Sokal I, Yang L, Roychowdhury N, Palczewski K, Berson EL, Dryja TP, Baehr W.

Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3863-70.

6.

Autosomal dominant cone dystrophy caused by a novel mutation in the GCAP1 gene (GUCA1A).

Jiang L, Katz BJ, Yang Z, Zhao Y, Faulkner N, Hu J, Baird J, Baehr W, Creel DJ, Zhang K.

Mol Vis. 2005 Feb 20;11:143-51.

7.

Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice.

Makino CL, Wen XH, Olshevskaya EV, Peshenko IV, Savchenko AB, Dizhoor AM.

PLoS One. 2012;7(10):e47637. doi: 10.1371/journal.pone.0047637. Epub 2012 Oct 17.

8.

Novel GUCA1A mutations suggesting possible mechanisms of pathogenesis in cone, cone-rod, and macular dystrophy patients.

Kamenarova K, Corton M, García-Sandoval B, Fernández-San Jose P, Panchev V, Avila-Fernández A, López-Molina MI, Chakarova C, Ayuso C, Bhattacharya SS.

Biomed Res Int. 2013;2013:517570. doi: 10.1155/2013/517570. Epub 2013 Aug 14.

9.

Retinal guanylyl cyclase isozyme 1 is the preferential in vivo target for constitutively active GCAP1 mutants causing congenital degeneration of photoreceptors.

Olshevskaya EV, Peshenko IV, Savchenko AB, Dizhoor AM.

J Neurosci. 2012 May 23;32(21):7208-17. doi: 10.1523/JNEUROSCI.0976-12.2012.

10.

A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1.

Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS.

Hum Mol Genet. 1998 Feb;7(2):273-7.

PMID:
9425234
11.

Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy.

Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, Webster AR.

Ophthalmology. 2005 Aug;112(8):1442-7.

PMID:
15953638
12.

Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene.

Nong E, Lee W, Merriam JE, Allikmets R, Tsang SH.

Doc Ophthalmol. 2014 Feb;128(1):59-67. doi: 10.1007/s10633-013-9420-z. Epub 2013 Dec 19.

13.

Impact of cone dystrophy-related mutations in GCAP1 on a kinetic model of phototransduction.

Dell'Orco D, Sulmann S, Zägel P, Marino V, Koch KW.

Cell Mol Life Sci. 2014 Oct;71(19):3829-40. doi: 10.1007/s00018-014-1593-4. Epub 2014 Feb 25.

PMID:
24566882
14.

Electrophysiologic and phenotypic features of an autosomal cone-rod dystrophy caused by a novel CRX mutation.

Lines MA, Hébert M, McTaggart KE, Flynn SJ, Tennant MT, MacDonald IM.

Ophthalmology. 2002 Oct;109(10):1862-70.

PMID:
12359607
15.

Transgenic zebrafish expressing mutant human RETGC-1 exhibit aberrant cone and rod morphology.

Collery RF, Cederlund ML, Kennedy BN.

Exp Eye Res. 2013 Mar;108:120-8. doi: 10.1016/j.exer.2013.01.003. Epub 2013 Jan 15.

PMID:
23328348
16.

Mutation screening of the GUCA1B gene in patients with autosomal dominant cone and cone rod dystrophy.

Kitiratschky VB, Glöckner CJ, Kohl S.

Ophthalmic Genet. 2011 Sep;32(3):151-5. doi: 10.3109/13816810.2011.559650. Epub 2011 Mar 15.

PMID:
21405999
17.

Visual consequences of molecular changes in the guanylate cyclase-activating protein.

Stockman A, Henning GB, Moore AT, Webster AR, Michaelides M, Ripamonti C.

Invest Ophthalmol Vis Sci. 2014 Mar 28;55(3):1930-40. doi: 10.1167/iovs.13-13682.

PMID:
24557353
18.

Two retinal dystrophy-associated missense mutations in GUCA1A with distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase.

Marino V, Scholten A, Koch KW, Dell'Orco D.

Hum Mol Genet. 2015 Dec 1;24(23):6653-66. doi: 10.1093/hmg/ddv370. Epub 2015 Sep 10.

PMID:
26358777
19.

Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration caused by elevated production of cGMP in the dark.

Woodruff ML, Olshevskaya EV, Savchenko AB, Peshenko IV, Barrett R, Bush RA, Sieving PA, Fain GL, Dizhoor AM.

J Neurosci. 2007 Aug 15;27(33):8805-15.

20.

Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase.

Kitiratschky VB, Behnen P, Kellner U, Heckenlively JR, Zrenner E, Jägle H, Kohl S, Wissinger B, Koch KW.

Hum Mutat. 2009 Aug;30(8):E782-96. doi: 10.1002/humu.21055.

Supplemental Content

Support Center