Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Quantitative variation in autocrine signaling and pathway crosstalk in the Caenorhabditis vulval network.

Hoyos E, Kim K, Milloz J, Barkoulas M, Pénigault JB, Munro E, Félix MA.

Curr Biol. 2011 Apr 12;21(7):527-38. doi: 10.1016/j.cub.2011.02.040. Epub 2011 Mar 31.

2.
3.

Caenorhabditis elegans vulval cell fate patterning.

Félix MA.

Phys Biol. 2012 Aug;9(4):045001. doi: 10.1088/1478-3975/9/4/045001. Epub 2012 Aug 7.

PMID:
22871570
4.

Predictive modeling of signaling crosstalk during C. elegans vulval development.

Fisher J, Piterman N, Hajnal A, Henzinger TA.

PLoS Comput Biol. 2007 May;3(5):e92.

5.

Pattern formation during C. elegans vulval induction.

Wang M, Sternberg PW.

Curr Top Dev Biol. 2001;51:189-220. Review.

PMID:
11236714
6.

Cryptic genetic variation uncovers evolution of environmentally sensitive parameters in Caenorhabditis vulval development.

Grimbert S, Braendle C.

Evol Dev. 2014 Sep;16(5):278-91. doi: 10.1111/ede.12091. Epub 2014 Aug 20.

PMID:
25143152
7.

Conserved mechanism of Wnt signaling function in the specification of vulval precursor fates in C. elegans and C. briggsae.

Seetharaman A, Cumbo P, Bojanala N, Gupta BP.

Dev Biol. 2010 Oct 1;346(1):128-39. doi: 10.1016/j.ydbio.2010.07.003. Epub 2010 Jul 17.

8.

Vulval development.

Sternberg PW.

WormBook. 2005 Jun 25:1-28. Review.

9.

Intercellular coupling amplifies fate segregation during Caenorhabditis elegans vulval development.

Giurumescu CA, Sternberg PW, Asthagiri AR.

Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1331-6. Epub 2006 Jan 23.

10.

Mutations in Caenorhabditis briggsae identify new genes important for limiting the response to EGF signaling during vulval development.

Sharanya D, Fillis CJ, Kim J, Zitnik EM Jr, Ward KA, Gallagher ME, Chamberlin HM, Gupta BP.

Evol Dev. 2015 Jan-Feb;17(1):34-48. doi: 10.1111/ede.12105.

PMID:
25627712
11.

Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development.

Yoo AS, Bais C, Greenwald I.

Science. 2004 Jan 30;303(5658):663-6.

12.

Wnt and EGF pathways act together to induce C. elegans male hook development.

Yu H, Seah A, Herman MA, Ferguson EL, Horvitz HR, Sternberg PW.

Dev Biol. 2009 Mar 15;327(2):419-32. doi: 10.1016/j.ydbio.2008.12.023. Epub 2008 Dec 30.

14.

Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation.

Barkoulas M, van Zon JS, Milloz J, van Oudenaarden A, Félix MA.

Dev Cell. 2013 Jan 14;24(1):64-75. doi: 10.1016/j.devcel.2012.12.001.

15.

Ras effector switching promotes divergent cell fates in C. elegans vulval patterning.

Zand TP, Reiner DJ, Der CJ.

Dev Cell. 2011 Jan 18;20(1):84-96. doi: 10.1016/j.devcel.2010.12.004.

16.

Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction.

Grimbert S, Tietze K, Barkoulas M, Sternberg PW, Félix MA, Braendle C.

Dev Biol. 2016 Aug 1;416(1):123-135. doi: 10.1016/j.ydbio.2016.05.036. Epub 2016 Jun 8.

17.
18.
19.

Two nested gonadal inductions of the vulva in nematodes.

Félix MA, Sternberg PW.

Development. 1997 Jan;124(1):253-9.

20.

Computational modeling of Caenorhabditis elegans vulval induction.

Sun X, Hong P.

Bioinformatics. 2007 Jul 1;23(13):i499-507.

PMID:
17646336

Supplemental Content

Support Center