Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Low-volume interval training improves muscle oxidative capacity in sedentary adults.

Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ.

Med Sci Sports Exerc. 2011 Oct;43(10):1849-56. doi: 10.1249/MSS.0b013e3182199834.

PMID:
21448086
2.

A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ.

J Physiol. 2010 Mar 15;588(Pt 6):1011-22. doi: 10.1113/jphysiol.2009.181743.

3.

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.

Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA.

J Appl Physiol (1985). 2008 Nov;105(5):1462-70. doi: 10.1152/japplphysiol.90882.2008.

4.

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ.

J Physiol. 2008 Jan 1;586(1):151-60.

5.

Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.

Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ.

Exp Physiol. 2014 May 1;99(5):782-91. doi: 10.1113/expphysiol.2013.077453.

6.

Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training.

Nordsborg NB, Connolly L, Weihe P, Iuliano E, Krustrup P, Saltin B, Mohr M.

J Appl Physiol (1985). 2015 Jul 15;119(2):116-23. doi: 10.1152/japplphysiol.00101.2015.

7.

Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans.

Cochran AJ, Little JP, Tarnopolsky MA, Gibala MJ.

J Appl Physiol (1985). 2010 Mar;108(3):628-36. doi: 10.1152/japplphysiol.00659.2009.

8.

Short-term intensified cycle training alters acute and chronic responses of PGC1α and Cytochrome C oxidase IV to exercise in human skeletal muscle.

Stepto NK, Benziane B, Wadley GD, Chibalin AV, Canny BJ, Eynon N, McConell GK.

PLoS One. 2012;7(12):e53080. doi: 10.1371/journal.pone.0053080.

9.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90.

10.

Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.

Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, Wadley GD.

Free Radic Biol Med. 2015 Dec;89:852-62. doi: 10.1016/j.freeradbiomed.2015.10.412.

PMID:
26482865
11.

PGC-1α transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males.

Cobley JN, Bartlett JD, Kayani A, Murray SW, Louhelainen J, Donovan T, Waldron S, Gregson W, Burniston JG, Morton JP, Close GL.

Biogerontology. 2012 Dec;13(6):621-31. doi: 10.1007/s10522-012-9408-1.

PMID:
23187721
12.

Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances.

Item F, Nocito A, Thöny S, Bächler T, Boutellier U, Wenger RH, Toigo M.

Eur J Appl Physiol. 2013 Apr;113(4):1081-90. doi: 10.1007/s00421-012-2524-4.

PMID:
23086295
13.
14.

High-intensity interval training increases SIRT1 activity in human skeletal muscle.

Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, Bonen A.

Appl Physiol Nutr Metab. 2010 Jun;35(3):350-7. doi: 10.1139/H10-030.

PMID:
20555380
15.

New records in aerobic power among octogenarian lifelong endurance athletes.

Trappe S, Hayes E, Galpin A, Kaminsky L, Jemiolo B, Fink W, Trappe T, Jansson A, Gustafsson T, Tesch P.

J Appl Physiol (1985). 2013 Jan 1;114(1):3-10. doi: 10.1152/japplphysiol.01107.2012.

16.

Effect of 5-week moderate intensity endurance training on the oxidative stress, muscle specific uncoupling protein (UCP3) and superoxide dismutase (SOD2) contents in vastus lateralis of young, healthy men.

Majerczak J, Rychlik B, Grzelak A, Grzmil P, Karasinski J, Pierzchalski P, Pulaski L, Bartosz G, Zoladz JA.

J Physiol Pharmacol. 2010 Dec;61(6):743-51.

17.

Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle.

Psilander N, Frank P, Flockhart M, Sahlin K.

Eur J Appl Physiol. 2013 Apr;113(4):951-63. doi: 10.1007/s00421-012-2504-8.

PMID:
23053125
18.

Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes.

Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, Gibala MJ.

J Appl Physiol (1985). 2011 Dec;111(6):1554-60. doi: 10.1152/japplphysiol.00921.2011.

19.

Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.

Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M.

J Appl Physiol (1985). 2009 Mar;106(3):929-34. doi: 10.1152/japplphysiol.90880.2008.

20.

Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.

Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA.

J Physiol. 2006 Sep 15;575(Pt 3):901-11.

Items per page

Supplemental Content

Support Center