Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 230

1.

Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting.

Gonçalves RH, Lima BH, Leite ER.

J Am Chem Soc. 2011 Apr 20;133(15):6012-9. doi: 10.1021/ja111454f. Epub 2011 Mar 28.

PMID:
21443221
2.

Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.

Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M.

J Am Chem Soc. 2010 Jun 2;132(21):7436-44. doi: 10.1021/ja101564f.

PMID:
20443599
3.

A scalable colloidal approach to prepare hematite films for efficient solar water splitting.

Zong X, Thaweesak S, Xu H, Xing Z, Zou J, Lu GM, Wang L.

Phys Chem Chem Phys. 2013 Aug 7;15(29):12314-21. doi: 10.1039/c3cp52153b. Epub 2013 Jun 18.

PMID:
23778329
4.

Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.

Wang D, Chen H, Chang G, Lin X, Zhang Y, Aldalbahi A, Peng C, Wang J, Fan C.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14072-8. doi: 10.1021/acsami.5b03298. Epub 2015 Jun 19.

PMID:
26052922
5.

Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.

Wang P, Wang D, Lin J, Li X, Peng C, Gao X, Huang Q, Wang J, Xu H, Fan C.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2295-302. doi: 10.1021/am300395p. Epub 2012 Apr 3.

PMID:
22452535
6.

Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.

Diab M, Mokari T.

Inorg Chem. 2014 Feb 17;53(4):2304-9. doi: 10.1021/ic403027r. Epub 2014 Jan 28.

PMID:
24471819
7.

Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.

Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, Laberty-Robert C, Sanchez C.

Phys Chem Chem Phys. 2012 Oct 14;14(38):13224-32. doi: 10.1039/c2cp42535a.

PMID:
22911106
8.

Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

Steier L, Luo J, Schreier M, Mayer MT, Sajavaara T, Grätzel M.

ACS Nano. 2015 Dec 22;9(12):11775-83. doi: 10.1021/acsnano.5b03694. Epub 2015 Nov 16.

PMID:
26516784
9.

Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.

Shen S, Li M, Guo L, Jiang J, Mao SS.

J Colloid Interface Sci. 2014 Aug 1;427:20-4. doi: 10.1016/j.jcis.2013.10.063. Epub 2013 Nov 9.

PMID:
24290228
10.

A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.

Ahmed MG, Kretschmer IE, Kandiel TA, Ahmed AY, Rashwan FA, Bahnemann DW.

ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24053-62. doi: 10.1021/acsami.5b07065. Epub 2015 Oct 21.

PMID:
26488924
11.

Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.

Kment S, Schmuki P, Hubicka Z, Machala L, Kirchgeorg R, Liu N, Wang L, Lee K, Olejnicek J, Cada M, Gregora I, Zboril R.

ACS Nano. 2015 Jul 28;9(7):7113-23. doi: 10.1021/acsnano.5b01740. Epub 2015 Jun 23.

PMID:
26083741
12.

Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.

Fu L, Yu H, Li Y, Zhang C, Wang X, Shao Z, Yi B.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4284-90. doi: 10.1039/c3cp54240h.

PMID:
24451918
13.

Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.

Cho ES, Kang MJ, Kang YS.

Phys Chem Chem Phys. 2015 Jun 28;17(24):16145-50. doi: 10.1039/c5cp01823d. Epub 2015 Jun 2.

PMID:
26032403
14.

A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

Hisatomi T, Brillet J, Cornuz M, Le Formal F, Tétreault N, Sivula K, Grätzel M.

Faraday Discuss. 2012;155:223-32; discussion 297-308.

PMID:
22470976
15.

Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting.

Brillet J, Grätzel M, Sivula K.

Nano Lett. 2010 Oct 13;10(10):4155-60. doi: 10.1021/nl102708c.

PMID:
20822157
16.

Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.

Kim do H, Andoshe DM, Shim YS, Moon CW, Sohn W, Choi S, Kim TL, Lee M, Park H, Hong K, Kwon KC, Suh JM, Kim JS, Lee JH, Jang HW.

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23793-800. doi: 10.1021/acsami.6b05366. Epub 2016 Aug 29.

PMID:
27551887
17.

Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.

Gonçalves RH, Leite LD, Leite ER.

ChemSusChem. 2012 Dec;5(12):2341-7. doi: 10.1002/cssc.201200484. Epub 2012 Nov 8.

PMID:
23139181
18.

Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting.

Kim JY, Magesh G, Youn DH, Jang JW, Kubota J, Domen K, Lee JS.

Sci Rep. 2013;3:2681. doi: 10.1038/srep02681.

19.

Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.

Ling Y, Wang G, Wang H, Yang Y, Li Y.

ChemSusChem. 2014 Mar;7(3):848-53. doi: 10.1002/cssc.201301013. Epub 2014 Feb 3.

PMID:
24493003
20.

Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.

Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS.

Nanoscale. 2013 Oct 21;5(20):9867-74. doi: 10.1039/c3nr03245k.

PMID:
23974247

Supplemental Content

Support Center