Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115


Structural basis of cooperative ligand binding by the glycine riboswitch.

Butler EB, Xiong Y, Wang J, Strobel SA.

Chem Biol. 2011 Mar 25;18(3):293-8. doi: 10.1016/j.chembiol.2011.01.013.


Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch.

Erion TV, Strobel SA.

RNA. 2011 Jan;17(1):74-84. doi: 10.1261/rna.2271511. Epub 2010 Nov 23.


Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.

Baird NJ, Ferré-D'Amaré AR.

RNA. 2013 Feb;19(2):167-76. doi: 10.1261/rna.036269.112. Epub 2012 Dec 17.


Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.

Ruff KM, Strobel SA.

RNA. 2014 Nov;20(11):1775-88. doi: 10.1261/rna.047266.114. Epub 2014 Sep 22.


Chemical basis of glycine riboswitch cooperativity.

Kwon M, Strobel SA.

RNA. 2008 Jan;14(1):25-34. Epub 2007 Nov 27. Erratum in: RNA. 2010 Nov;16(11):2291.


An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.

Sherman EM, Esquiaqui J, Elsayed G, Ye JD.

RNA. 2012 Mar;18(3):496-507. doi: 10.1261/rna.031286.111. Epub 2012 Jan 25.


Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.

Huang L, Serganov A, Patel DJ.

Mol Cell. 2010 Dec 10;40(5):774-86. doi: 10.1016/j.molcel.2010.11.026.


Singlet glycine riboswitches bind ligand as well as tandem riboswitches.

Ruff KM, Muhammad A, McCown PJ, Breaker RR, Strobel SA.

RNA. 2016 Nov;22(11):1728-1738. Epub 2016 Sep 22.


Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding.

Lipfert J, Sim AY, Herschlag D, Doniach S.

RNA. 2010 Apr;16(4):708-19. doi: 10.1261/rna.1985110. Epub 2010 Mar 1.


Pseudoknot preorganization of the preQ1 class I riboswitch.

Santner T, Rieder U, Kreutz C, Micura R.

J Am Chem Soc. 2012 Jul 25;134(29):11928-31. doi: 10.1021/ja3049964. Epub 2012 Jul 9.


DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch.

Sherman EM, Elsayed G, Esquiaqui JM, Elsayed M, Brinda B, Ye JD.

J Biochem. 2014 Dec;156(6):323-31. doi: 10.1093/jb/mvu048. Epub 2014 Aug 4.


In Vivo Behavior of the Tandem Glycine Riboswitch in Bacillus subtilis.

Babina AM, Lea NE, Meyer MM.

mBio. 2017 Oct 31;8(5). pii: e01602-17. doi: 10.1128/mBio.01602-17.


Synthetic ligands for PreQ1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure.

Connelly CM, Numata T, Boer RE, Moon MH, Sinniah RS, Barchi JJ, Ferré-D'Amaré AR, Schneekloth JS Jr.

Nat Commun. 2019 Apr 2;10(1):1501. doi: 10.1038/s41467-019-09493-3.


Structural Basis for Ligand Binding to the Guanidine-I Riboswitch.

Reiss CW, Xiong Y, Strobel SA.

Structure. 2017 Jan 3;25(1):195-202. doi: 10.1016/j.str.2016.11.020. Epub 2016 Dec 22.


Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity.

Weigand JE, Schmidtke SR, Will TJ, Duchardt-Ferner E, Hammann C, Wöhnert J, Suess B.

Nucleic Acids Res. 2011 Apr;39(8):3363-72. doi: 10.1093/nar/gkq946. Epub 2010 Dec 11.


The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.

Trausch JJ, Ceres P, Reyes FE, Batey RT.

Structure. 2011 Oct 12;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub 2011 Sep 8.


Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.

Rode AB, Endoh T, Sugimoto N.

Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6868-6872. doi: 10.1002/anie.201803052. Epub 2018 Apr 27.


Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.

Gong Z, Zhao Y, Chen C, Duan Y, Xiao Y.

PLoS One. 2014 Mar 24;9(3):e92247. doi: 10.1371/journal.pone.0092247. eCollection 2014.


Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.

Inuzuka S, Kakizawa H, Nishimura KI, Naito T, Miyazaki K, Furuta H, Matsumura S, Ikawa Y.

Genes Cells. 2018 Jun;23(6):435-447. doi: 10.1111/gtc.12586. Epub 2018 Apr 25.

Supplemental Content

Support Center