Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage.

Lightfield J, Fram NR, Ely B.

PLoS One. 2011 Mar 10;6(3):e17677. doi: 10.1371/journal.pone.0017677.

2.
4.

Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.

Bohlin J, Brynildsrud O, Vesth T, Skjerve E, Ussery DW.

PLoS One. 2013 Jul 26;8(7):e69878. doi: 10.1371/journal.pone.0069878. Print 2013.

5.

Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content.

Sandberg R, Bränden CI, Ernberg I, Cöster J.

Gene. 2003 Jun 5;311:35-42.

PMID:
12853136
6.

Seven GC-rich microbial genomes adopt similar codon usage patterns regardless of their phylogenetic lineages.

Chen LL, Zhang CT.

Biochem Biophys Res Commun. 2003 Jun 20;306(1):310-7.

PMID:
12788106
7.

The genome of Campylobacter jejuni: codon and amino acid usage.

Fuglsang A.

APMIS. 2003 Jun;111(6):605-18.

PMID:
12969016
8.
9.

Evidence of selection upon genomic GC-content in bacteria.

Hildebrand F, Meyer A, Eyre-Walker A.

PLoS Genet. 2010 Sep 9;6(9):e1001107. doi: 10.1371/journal.pgen.1001107.

10.

GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage.

Li J, Zhou J, Wu Y, Yang S, Tian D.

G3 (Bethesda). 2015 Aug 6;5(10):2027-36. doi: 10.1534/g3.115.019877.

11.

GC content-independent amino acid patterns in bacteria and archaea.

Schmidt A, Rzanny M, Schmidt A, Hagen M, Schütze E, Kothe E.

J Basic Microbiol. 2012 Apr;52(2):195-205. doi: 10.1002/jobm.201100067. Epub 2011 Jul 21.

PMID:
21780150
12.

Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea.

Ran W, Kristensen DM, Koonin EV.

MBio. 2014 Mar 25;5(2):e00956-14. doi: 10.1128/mBio.00956-14.

13.

Stabilization of secondary structure elements by specific combinations of hydrophilic and hydrophobic amino acid residues is more important for proteins encoded by GC-poor genes.

Khrustalev VV, Barkovsky EV.

Biochimie. 2012 Dec;94(12):2706-15. doi: 10.1016/j.biochi.2012.08.008. Epub 2012 Aug 21.

PMID:
22930059
14.

Hydrophobicity and aromaticity are primary factors shaping variation in amino acid usage of chicken proteome.

Rao Y, Wang Z, Chai X, Nie Q, Zhang X.

PLoS One. 2014 Oct 16;9(10):e110381. doi: 10.1371/journal.pone.0110381. eCollection 2014.

15.
16.
17.

Codon usage in vertebrates is associated with a low risk of acquiring nonsense mutations.

Schmid P, Flegel WA.

J Transl Med. 2011 Jun 8;9:87. doi: 10.1186/1479-5876-9-87.

18.

Rapid divergence of codon usage patterns within the rice genome.

Wang HC, Hickey DA.

BMC Evol Biol. 2007 Feb 8;7 Suppl 1:S6.

19.

The evolution of biased codon and amino acid usage in nematode genomes.

Cutter AD, Wasmuth JD, Blaxter ML.

Mol Biol Evol. 2006 Dec;23(12):2303-15. Epub 2006 Aug 25.

PMID:
16936139
20.

Study of completed archaeal genomes and proteomes: hypothesis of strong mutational AT pressure existed in their common predecessor.

Khrustalev VV, Barkovsky EV.

Genomics Proteomics Bioinformatics. 2010 Mar;8(1):22-32. doi: 10.1016/S1672-0229(10)60003-4.

Supplemental Content

Support Center