Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors.

Clegg NJ, Couto SS, Wongvipat J, Hieronymus H, Carver BS, Taylor BS, Ellwood-Yen K, Gerald WL, Sander C, Sawyers CL.

PLoS One. 2011 Mar 4;6(3):e17449. doi: 10.1371/journal.pone.0017449.

2.

Hepsin cooperates with MYC in the progression of adenocarcinoma in a prostate cancer mouse model.

Nandana S, Ellwood-Yen K, Sawyers C, Wills M, Weidow B, Case T, Vasioukhin V, Matusik R.

Prostate. 2010 May 1;70(6):591-600. doi: 10.1002/pros.21093.

3.

Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer.

Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J, Thompson TC.

Mol Cancer Res. 2012 Feb;10(2):218-29. doi: 10.1158/1541-7786.MCR-11-0451. Epub 2011 Dec 5.

4.

The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision.

Luchman HA, Benediktsson H, Villemaire ML, Peterson AC, Jirik FR.

PLoS One. 2008;3(12):e3940. doi: 10.1371/journal.pone.0003940. Epub 2008 Dec 15.

5.

mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.

Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR.

Nat Med. 2004 Jun;10(6):594-601. Epub 2004 May 23.

PMID:
15156201
6.

Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice.

Kladney RD, Cardiff RD, Kwiatkowski DJ, Chiang GG, Weber JD, Arbeit JM, Lu ZH.

Cancer Res. 2010 Nov 1;70(21):8937-47. doi: 10.1158/0008-5472.CAN-10-1646. Epub 2010 Oct 12.

7.

Limited significance of activated Akt-mammalian target of rapamycin signaling pathway in prostate cancer progression.

Ko YH, Miyake H, Behnsawy HM, Cheon J, Fujisawa M.

Urol Int. 2014;93(2):146-51. doi: 10.1159/000356262. Epub 2014 Feb 20.

PMID:
24556942
8.

MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.

Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL, Bethel C, Lotz MT, Yegnasubramanian S, Nelson WG, Dang CV, Xu M, Anele U, Koh CM, Bieberich CJ, De Marzo AM.

PLoS One. 2010 Feb 25;5(2):e9427. doi: 10.1371/journal.pone.0009427.

9.

PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response.

Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE, Khwaja A.

Leukemia. 2013 Mar;27(3):650-60. doi: 10.1038/leu.2012.285. Epub 2012 Oct 5.

PMID:
23038273
10.

A constitutively activated form of the p110beta isoform of PI3-kinase induces prostatic intraepithelial neoplasia in mice.

Lee SH, Poulogiannis G, Pyne S, Jia S, Zou L, Signoretti S, Loda M, Cantley LC, Roberts TM.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11002-7. doi: 10.1073/pnas.1005642107. Epub 2010 Jun 1.

11.

Transgenic overexpression of PKCε in the mouse prostate induces preneoplastic lesions.

Benavides F, Blando J, Perez CJ, Garg R, Conti CJ, DiGiovanni J, Kazanietz MG.

Cell Cycle. 2011 Jan 15;10(2):268-77. Epub 2011 Jan 15.

12.

Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model.

Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q, Bikoff R, Ma H, Kantoff PW, Golub TR, Loda M, Sellers WR.

Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7841-6. Epub 2003 Jun 10.

13.

Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis.

Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J.

Oncogene. 2009 Sep 17;28(37):3307-19. doi: 10.1038/onc.2009.181. Epub 2009 Jul 13.

14.

TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway.

Vo BT, Morton D Jr, Komaragiri S, Millena AC, Leath C, Khan SA.

Endocrinology. 2013 May;154(5):1768-79. doi: 10.1210/en.2012-2074. Epub 2013 Mar 20.

15.

Synergistic anticancer efficacy of MEK inhibition and dual PI3K/mTOR inhibition in castration-resistant prostate cancer.

Park H, Kim Y, Sul JW, Jeong IG, Yi HJ, Ahn JB, Kang JS, Yun J, Hwang JJ, Kim CS.

Prostate. 2015 Nov;75(15):1747-59. doi: 10.1002/pros.23057. Epub 2015 Aug 7.

PMID:
26250606
16.

Ursolic Acid Induces Apoptosis of Prostate Cancer Cells via the PI3K/Akt/mTOR Pathway.

Meng Y, Lin ZM, Ge N, Zhang DL, Huang J, Kong F.

Am J Chin Med. 2015;43(7):1471-86. doi: 10.1142/S0192415X15500834. Epub 2015 Oct 27.

PMID:
26503559
17.

The promise of dual targeting Akt/mTOR signaling in lethal prostate cancer.

Floc'h N, Abate-Shen C.

Oncotarget. 2012 Dec;3(12):1483-4. No abstract available.

18.

Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer.

Bitting RL, Armstrong AJ.

Endocr Relat Cancer. 2013 May 20;20(3):R83-99. doi: 10.1530/ERC-12-0394. Print 2013 Jun. Review.

PMID:
23456430
19.

PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis.

Jefferies MT, Cox AC, Shorning BY, Meniel V, Griffiths D, Kynaston HG, Smalley MJ, Clarke AR.

J Pathol. 2017 Dec;243(4):442-456. doi: 10.1002/path.4977. Epub 2017 Nov 14.

20.

B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer.

Wang J, Kobayashi T, Floc'h N, Kinkade CW, Aytes A, Dankort D, Lefebvre C, Mitrofanova A, Cardiff RD, McMahon M, Califano A, Shen MM, Abate-Shen C.

Cancer Res. 2012 Sep 15;72(18):4765-76. Epub 2012 Jul 25.

Supplemental Content

Support Center