Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Resting-state networks in the macaque at 7 T.

Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S.

Neuroimage. 2011 Jun 1;56(3):1546-55. doi: 10.1016/j.neuroimage.2011.02.063. Epub 2011 Feb 26.

PMID:
21356313
2.

Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.

van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE.

Hum Brain Mapp. 2009 Oct;30(10):3127-41. doi: 10.1002/hbm.20737.

PMID:
19235882
3.

Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest.

van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE.

Hum Brain Mapp. 2004 Jul;22(3):165-78.

PMID:
15195284
4.

Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques.

Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS.

Hum Brain Mapp. 2013 Sep;34(9):2154-77. doi: 10.1002/hbm.22058. Epub 2012 Mar 22.

PMID:
22438275
5.

Striatal functional connectivity networks are modulated by fMRI resting state conditions.

Gopinath K, Ringe W, Goyal A, Carter K, Dinse HR, Haley R, Briggs R.

Neuroimage. 2011 Jan 1;54(1):380-8. doi: 10.1016/j.neuroimage.2010.07.021. Epub 2010 Jul 14.

PMID:
20637878
6.

Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.

Kang J, Wang L, Yan C, Wang J, Liang X, He Y.

Neuroimage. 2011 Jun 1;56(3):1222-34. doi: 10.1016/j.neuroimage.2011.03.033. Epub 2011 Mar 21.

PMID:
21420500
7.

Functional connectivity of the macaque brain across stimulus and arousal states.

Moeller S, Nallasamy N, Tsao DY, Freiwald WA.

J Neurosci. 2009 May 6;29(18):5897-909. doi: 10.1523/JNEUROSCI.0220-09.2009.

8.

Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI.

Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS.

J Neurophysiol. 2010 Jun;103(6):3398-406. doi: 10.1152/jn.00141.2010. Epub 2010 Apr 21.

9.

Default mode network as revealed with multiple methods for resting-state functional MRI analysis.

Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang TZ, Yang H, Gong QY, Wang L, Li KC, Xie S, Zang YF.

J Neurosci Methods. 2008 Jun 30;171(2):349-55. doi: 10.1016/j.jneumeth.2008.03.021. Epub 2008 Apr 10.

PMID:
18486233
10.

Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD.

Hum Brain Mapp. 2010 Nov;31(11):1713-26. doi: 10.1002/hbm.20968.

PMID:
20725910
11.

Dissociation of the neural networks recruited during a haptic object-recognition task: complementary results with a tensorial independent component analysis.

Habas C, Cabanis EA.

AJNR Am J Neuroradiol. 2008 Oct;29(9):1715-21. doi: 10.3174/ajnr.A1191. Epub 2008 Jul 3.

12.

Defining neurocognitive networks in the BOLD new world of computed connectivity.

Mesulam M.

Neuron. 2009 Apr 16;62(1):1-3. doi: 10.1016/j.neuron.2009.04.001.

13.

Identification of large-scale networks in the brain using fMRI.

Bellec P, Perlbarg V, Jbabdi S, Pélégrini-Issac M, Anton JL, Doyon J, Benali H.

Neuroimage. 2006 Feb 15;29(4):1231-43. Epub 2005 Oct 24.

PMID:
16246590
14.

Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T.

Hum Brain Mapp. 2007 Oct;28(10):967-78.

PMID:
17133390
15.

Distinct brain networks in recognition memory share a defined region in the precuneus.

Dörfel D, Werner A, Schaefer M, von Kummer R, Karl A.

Eur J Neurosci. 2009 Nov;30(10):1947-59. doi: 10.1111/j.1460-9568.2009.06973.x. Epub 2009 Nov 6.

PMID:
19895564
16.

Parcellation-dependent small-world brain functional networks: a resting-state fMRI study.

Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y.

Hum Brain Mapp. 2009 May;30(5):1511-23. doi: 10.1002/hbm.20623.

PMID:
18649353
17.

Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.

van de Ven V, Bledowski C, Prvulovic D, Goebel R, Formisano E, Di Salle F, Linden DE, Esposito F.

Hum Brain Mapp. 2008 Dec;29(12):1450-61.

PMID:
17990304
18.

Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex.

Hutchison RM, Womelsdorf T, Gati JS, Leung LS, Menon RS, Everling S.

Cereb Cortex. 2012 Jun;22(6):1294-308. doi: 10.1093/cercor/bhr181. Epub 2011 Aug 11.

PMID:
21840845
19.

Modulatory effects of acupuncture on resting-state networks: a functional MRI study combining independent component analysis and multivariate Granger causality analysis.

Zhong C, Bai L, Dai R, Xue T, Wang H, Feng Y, Liu Z, You Y, Chen S, Tian J.

J Magn Reson Imaging. 2012 Mar;35(3):572-81. doi: 10.1002/jmri.22887. Epub 2011 Nov 8.

PMID:
22069078
20.

Evaluating the effective connectivity of resting state networks using conditional Granger causality.

Liao W, Mantini D, Zhang Z, Pan Z, Ding J, Gong Q, Yang Y, Chen H.

Biol Cybern. 2010 Jan;102(1):57-69. doi: 10.1007/s00422-009-0350-5. Epub 2009 Nov 25.

PMID:
19937337

Supplemental Content

Support Center