Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

Unliganded progesterone receptors attenuate taxane-induced breast cancer cell death by modulating the spindle assembly checkpoint.

Badtke MM, Jambal P, Dye WW, Spillman MA, Post MD, Horwitz KB, Jacobsen BM.

Breast Cancer Res Treat. 2012 Jan;131(1):75-87. doi: 10.1007/s10549-011-1399-0. Epub 2011 Feb 22.

2.
3.

Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression.

Knutson TP, Daniel AR, Fan D, Silverstein KA, Covington KR, Fuqua SA, Lange CA.

Breast Cancer Res. 2012 Jun 14;14(3):R95.

4.

Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers.

Itoh M, Iwamoto T, Matsuoka J, Nogami T, Motoki T, Shien T, Taira N, Niikura N, Hayashi N, Ohtani S, Higaki K, Fujiwara T, Doihara H, Symmans WF, Pusztai L.

Breast Cancer Res Treat. 2014 Jan;143(2):403-9. doi: 10.1007/s10549-013-2763-z. Epub 2013 Dec 15.

PMID:
24337596
5.

Sulindac sulfide and exisulind inhibit expression of the estrogen and progesterone receptors in human breast cancer cells.

Lim JT, Joe AK, Suzui M, Shimizu M, Masuda M, Weinstein IB.

Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3478-84.

6.

Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors.

Wiebe JP, Zhang G, Welch I, Cadieux-Pitre HA.

Breast Cancer Res. 2013 May 11;15(3):R38. doi: 10.1186/bcr3422.

7.

6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells.

Chung KS, Choi HE, Shin JS, Cho YW, Choi JH, Cho WJ, Lee KT.

Carcinogenesis. 2013 Aug;34(8):1852-60. doi: 10.1093/carcin/bgt133. Epub 2013 Apr 24.

8.

A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer.

Singel SM, Cornelius C, Batten K, Fasciani G, Wright WE, Lum L, Shay JW.

Clin Cancer Res. 2013 Apr 15;19(8):2061-70. doi: 10.1158/1078-0432.CCR-13-0082. Epub 2013 Mar 11.

9.

Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease.

Knox AJ, Scaling AL, Pinto MP, Bliesner BS, Haughian JM, Abdel-Hafiz HA, Horwitz KB.

Breast Cancer Res. 2014 Aug 13;16(4):418. doi: 10.1186/s13058-014-0418-6.

10.

Benzopyran derivative CDRI-85/287 induces G2-M arrest in estrogen receptor-positive breast cancer cells via modulation of estrogen receptors α- and β-mediated signaling, in parallel to EGFR signaling and suppresses the growth of tumor xenograft.

Saxena R, Fatima I, Chandra V, Blesson CS, Kharkwal G, Hussain MK, Hajela K, Roy BG, Dwivedi A.

Steroids. 2013 Nov;78(11):1071-86. doi: 10.1016/j.steroids.2013.07.004. Epub 2013 Jul 26.

PMID:
23891847
11.

Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch.

Haughian JM, Pinto MP, Harrell JC, Bliesner BS, Joensuu KM, Dye WW, Sartorius CA, Tan AC, Heikkilä P, Perou CM, Horwitz KB.

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2742-7. doi: 10.1073/pnas.1106509108. Epub 2011 Oct 3.

13.

Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties.

Axlund SD, Yoo BH, Rosen RB, Schaack J, Kabos P, Labarbera DV, Sartorius CA.

Horm Cancer. 2013 Feb;4(1):36-49. doi: 10.1007/s12672-012-0127-5. Epub 2012 Nov 27.

14.

Clinical instability of breast cancer markers is reflected in long-term in vitro estrogen deprivation studies.

Milosevic J, Klinge J, Borg AL, Foukakis T, Bergh J, Tobin NP.

BMC Cancer. 2013 Oct 11;13:473. doi: 10.1186/1471-2407-13-473.

15.

Expression profiling of human breast cancers and gene regulation by progesterone receptors.

Jacobsen BM, Richer JK, Sartorius CA, Horwitz KB.

J Mammary Gland Biol Neoplasia. 2003 Jul;8(3):257-68. Review.

PMID:
14973372
16.

Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells.

Ogba N, Manning NG, Bliesner BS, Ambler SK, Haughian JM, Pinto MP, Jedlicka P, Joensuu K, Heikkilä P, Horwitz KB.

Breast Cancer Res. 2014 Dec 5;16(6):489. doi: 10.1186/s13058-014-0489-4.

17.

Regulation of Msx2 gene expression by steroid hormones in human nonmalignant and malignant breast cancer explants cultured in vitro.

Malewski T, Milewicz T, Krzysiek J, Gregoraszczuk EL, Augustowska K.

Cancer Invest. 2005;23(3):222-8.

PMID:
15945508
18.

Progestin effects on breast cancer cell proliferation, proteases activation, and in vivo development of metastatic phenotype all depend on progesterone receptor capacity to activate cytoplasmic signaling pathways.

Carnevale RP, Proietti CJ, Salatino M, Urtreger A, Peluffo G, Edwards DP, Boonyaratanakornkit V, Charreau EH, Bal de Kier Joffé E, Schillaci R, Elizalde PV.

Mol Endocrinol. 2007 Jun;21(6):1335-58. Epub 2007 Apr 17.

PMID:
17440047
19.

Activity of taspine isolated from Radix et Rhizoma Leonticis against estrogen-receptor-positive breast cancer.

Zhan Y, Zhang Y, Chen Y, Wang N, Zheng L, He L.

Fitoterapia. 2011 Sep;82(6):896-902. doi: 10.1016/j.fitote.2011.05.004. Epub 2011 May 14.

PMID:
21605638
20.

The prognostic potential of keratin 18 in breast cancer associated with tumor dedifferentiation, and the loss of estrogen and progesterone receptors.

Ha SA, Lee YS, Kim HK, Yoo J, Kim S, Gong GH, Lee YK, Kim JW.

Cancer Biomark. 2011;10(5):219-31. doi: 10.3233/CBM-2012-0250.

PMID:
22699783
Items per page

Supplemental Content

Write to the Help Desk