Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients.

Scaltriti M, Eichhorn PJ, Cortés J, Prudkin L, Aura C, Jiménez J, Chandarlapaty S, Serra V, Prat A, Ibrahim YH, Guzmán M, Gili M, Rodríguez O, Rodríguez S, Pérez J, Green SR, Mai S, Rosen N, Hudis C, Baselga J.

Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3761-6. doi: 10.1073/pnas.1014835108. Epub 2011 Feb 14.

2.

Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells.

Caldon CE, Sergio CM, Kang J, Muthukaruppan A, Boersma MN, Stone A, Barraclough J, Lee CS, Black MA, Miller LD, Gee JM, Nicholson RI, Sutherland RL, Print CG, Musgrove EA.

Mol Cancer Ther. 2012 Jul;11(7):1488-99. doi: 10.1158/1535-7163.MCT-11-0963. Epub 2012 May 7.

3.

Anti-HER2 antibody trastuzumab inhibits CDK2-mediated NPAT and histone H4 expression via the PI3K pathway.

Le XF, Bedrosian I, Mao W, Murray M, Lu Z, Keyomarsi K, Lee MH, Zhao J, Bast RC Jr.

Cell Cycle. 2006 Aug;5(15):1654-61. Epub 2006 Aug 1.

PMID:
16861913
4.

Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.

Etemadmoghadam D, Au-Yeung G, Wall M, Mitchell C, Kansara M, Loehrer E, Batzios C, George J, Ftouni S, Weir BA, Carter S, Gresshoff I, Mileshkin L, Rischin D, Hahn WC, Waring PM, Getz G, Cullinane C, Campbell LJ, Bowtell DD.

Clin Cancer Res. 2013 Nov 1;19(21):5960-71. doi: 10.1158/1078-0432.CCR-13-1337. Epub 2013 Sep 4.

5.

A novel interaction between HER2/neu and cyclin E in breast cancer.

Mittendorf EA, Liu Y, Tucker SL, McKenzie T, Qiao N, Akli S, Biernacka A, Liu Y, Meijer L, Keyomarsi K, Hunt KK.

Oncogene. 2010 Jul 8;29(27):3896-907. doi: 10.1038/onc.2010.151. Epub 2010 May 10.

6.

Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines.

Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H.

Ann Oncol. 2010 Feb;21(2):255-62. doi: 10.1093/annonc/mdp304. Epub 2009 Jul 24.

PMID:
19633047
7.

Trastuzumab-resistant HER2-driven breast cancer cells are sensitive to epigallocatechin-3 gallate.

Eddy SF, Kane SE, Sonenshein GE.

Cancer Res. 2007 Oct 1;67(19):9018-23.

9.

Pathway-focused proteomic signatures in HER2-overexpressing breast cancer with a basal-like phenotype: new insights into de novo resistance to trastuzumab (Herceptin).

Oliveras-Ferraros C, Vazquez-Martin A, Martin-Castilló B, Pérez-Martínez MC, Cufí S, Del Barco S, Bernado L, Brunet J, López-Bonet E, Menendez JA.

Int J Oncol. 2010 Sep;37(3):669-78.

PMID:
20664936
10.

Inactivation of Rac1 reduces Trastuzumab resistance in PTEN deficient and insulin-like growth factor I receptor overexpressing human breast cancer SKBR3 cells.

Zhao Y, Wang Z, Jiang Y, Yang C.

Cancer Lett. 2011 Dec 26;313(1):54-63. doi: 10.1016/j.canlet.2011.08.023. Epub 2011 Sep 3.

PMID:
21943825
11.

Lipid-conjugated telomerase template antagonists sensitize resistant HER2-positive breast cancer cells to trastuzumab.

Goldblatt EM, Erickson PA, Gentry ER, Gryaznov SM, Herbert BS.

Breast Cancer Res Treat. 2009 Nov;118(1):21-32. doi: 10.1007/s10549-008-0201-4. Epub 2008 Oct 14.

PMID:
18853252
13.

Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells.

Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, Kharbanda S, Scaltriti M, Baselga J, Kufe D.

Oncogene. 2014 Jun 26;33(26):3422-31. doi: 10.1038/onc.2013.308. Epub 2013 Aug 5.

14.

Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.

Tseng PH, Wang YC, Weng SC, Weng JR, Chen CS, Brueggemeier RW, Shapiro CL, Chen CY, Dunn SE, Pollak M, Chen CS.

Mol Pharmacol. 2006 Nov;70(5):1534-41. Epub 2006 Aug 3.

15.

Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers--role of estrogen receptor and HER2 reactivation.

Wang YC, Morrison G, Gillihan R, Guo J, Ward RM, Fu X, Botero MF, Healy NA, Hilsenbeck SG, Phillips GL, Chamness GC, Rimawi MF, Osborne CK, Schiff R.

Breast Cancer Res. 2011;13(6):R121. doi: 10.1186/bcr3067. Epub 2011 Nov 28.

16.

Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts.

Groeneweg JW, Hernandez SF, Byron VF, DiGloria CM, Lopez H, Scialabba V, Kim M, Zhang L, Borger DR, Tambouret R, Foster R, Rueda BR, Growdon WB.

Clin Cancer Res. 2014 Dec 15;20(24):6517-28. doi: 10.1158/1078-0432.CCR-14-1647. Epub 2014 Oct 7.

17.

Optimizing outcomes in HER2-positive breast cancer: the molecular rationale.

Esteva FJ, Pusztai L.

Oncology (Williston Park). 2005 Nov;19(13 Suppl 5):5-16. Review.

19.

ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor.

Osipo C, Patel P, Rizzo P, Clementz AG, Hao L, Golde TE, Miele L.

Oncogene. 2008 Aug 28;27(37):5019-32. doi: 10.1038/onc.2008.149. Epub 2008 May 12.

PMID:
18469855

Supplemental Content

Support Center