Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 163

1.

Restoring orbital thinking from real space descriptions: bonding in classical and non-classical transition metal carbonyls.

Tiana D, Francisco E, Blanco MA, Macchi P, Sironi A, Martín Pendás A.

Phys Chem Chem Phys. 2011 Mar 21;13(11):5068-77. doi: 10.1039/c0cp01969k. Epub 2011 Feb 4.

2.

A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space.

Francisco E, Martín Pendás A, Blanco MA.

J Chem Phys. 2009 Sep 28;131(12):124125. doi: 10.1063/1.3239467.

PMID:
19791870
3.

One-electron images in real space: natural adaptive orbitals.

Menéndez M, Álvarez Boto R, Francisco E, Martín Pendás Á.

J Comput Chem. 2015 Apr 30;36(11):833-43. doi: 10.1002/jcc.23861. Epub 2015 Feb 18.

PMID:
25691432
4.

Domain-averaged Fermi-hole analysis for solids.

Baranov AI, Ponec R, Kohout M.

J Chem Phys. 2012 Dec 7;137(21):214109. doi: 10.1063/1.4768920.

PMID:
23231219
5.

Steric repulsions, rotation barriers, and stereoelectronic effects: a real space perspective.

Pendás AM, Blanco MA, Francisco E.

J Comput Chem. 2009 Jan 15;30(1):98-109. doi: 10.1002/jcc.21034.

PMID:
18536054
7.
8.

A quantum chemical calculation on Fe(CO)5 revealing the operation of the Dewar-Chatt-Duncanson model.

Bachler V.

J Comput Chem. 2012 Sep 15;33(24):1936-47. doi: 10.1002/jcc.23029. Epub 2012 Jun 6.

PMID:
22674406
9.

Analytic models of domain-averaged Fermi holes: a new tool for the study of the nature of chemical bonds.

Ponec R, Cooper DL, Savin A.

Chemistry. 2008;14(11):3338-45. doi: 10.1002/chem.200701727.

PMID:
18286554
11.

On the interpretation of domain averaged Fermi hole analyses of correlated wavefunctions.

Francisco E, Martín Pendás A, Costales A.

Phys Chem Chem Phys. 2014 Mar 14;16(10):4586-97. doi: 10.1039/c3cp54513j.

PMID:
24457524
12.

Structure and bonding in binuclear metal carbonyls from the analysis of domain averaged Fermi holes. I. Fe2(CO)9 and Co2(CO)8.

Ponec R, Lendvay G, Chaves J.

J Comput Chem. 2008 Jul 15;29(9):1387-98. doi: 10.1002/jcc.20894.

PMID:
18196504
13.

Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.

Brownridge S, Crawford MJ, Du H, Harcourt RD, Knapp C, Laitinen RS, Passmore J, Rautiainen JM, Suontamo RJ, Valkonen J.

Inorg Chem. 2007 Feb 5;46(3):681-99.

PMID:
17257010
14.

Definition of molecular structure: by choice or by appeal to observation?

Bader RF.

J Phys Chem A. 2010 Jul 22;114(28):7431-44. doi: 10.1021/jp102748b.

PMID:
20550157
15.

Beryllium Bonding in the Light of Modern Quantum Chemical Topology Tools.

Casals-Sainz JL, Jiménez-Grávalos F, Costales A, Francisco E, Pendás ÁM.

J Phys Chem A. 2018 Jan 25;122(3):849-858. doi: 10.1021/acs.jpca.7b10714. Epub 2018 Jan 16.

PMID:
29266947
16.

A one-electron approximation to domain-averaged Fermi hole analysis.

Cooper DL, Ponec R.

Phys Chem Chem Phys. 2008 Mar 7;10(9):1319-29. doi: 10.1039/b715904h. Epub 2008 Jan 18.

PMID:
18292867
17.

Developing paradigms of chemical bonding: adaptive natural density partitioning.

Zubarev DY, Boldyrev AI.

Phys Chem Chem Phys. 2008 Sep 14;10(34):5207-17. doi: 10.1039/b804083d. Epub 2008 Jul 3.

PMID:
18728862
18.

The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.

Kovács A, Esterhuysen C, Frenking G.

Chemistry. 2005 Mar 4;11(6):1813-25.

PMID:
15672434
19.

Transition metal-carbon complexes. A theoretical study.

Krapp A, Pandey KK, Frenking G.

J Am Chem Soc. 2007 Jun 20;129(24):7596-610. Epub 2007 May 27.

PMID:
17530845
20.

Supplemental Content

Support Center