Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family.

Hansen IA, Boudko DY, Shiao SH, Voronov DA, Meleshkevitch EA, Drake LL, Aguirre SE, Fox JM, Attardo GM, Raikhel AS.

J Biol Chem. 2011 Mar 25;286(12):10803-13. doi: 10.1074/jbc.M110.179739. Epub 2011 Jan 24.

2.

SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction.

Carpenter VK, Drake LL, Aguirre SE, Price DP, Rodriguez SD, Hansen IA.

J Insect Physiol. 2012 Apr;58(4):513-22. doi: 10.1016/j.jinsphys.2012.01.005. Epub 2012 Jan 15.

3.

Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti.

Boudko DY, Tsujimoto H, Rodriguez SD, Meleshkevitch EA, Price DP, Drake LL, Hansen IA.

Nat Commun. 2015 Oct 9;6:8546. doi: 10.1038/ncomms9546.

4.

NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti.

Piermarini PM, Weihrauch D, Meyer H, Huss M, Beyenbach KW.

Am J Physiol Renal Physiol. 2009 Apr;296(4):F730-50. doi: 10.1152/ajprenal.90564.2008. Epub 2009 Feb 4.

5.

Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti.

Drake LL, Rodriguez SD, Hansen IA.

Sci Rep. 2015 Jan 15;5:7795. doi: 10.1038/srep07795.

6.

Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction.

Attardo GM, Hansen IA, Shiao SH, Raikhel AS.

J Exp Biol. 2006 Aug;209(Pt 16):3071-8.

7.

Nuclear receptors in the mosquito Aedes aegypti: annotation, hormonal regulation and expression profiling.

Cruz J, Sieglaff DH, Arensburger P, Atkinson PW, Raikhel AS.

FEBS J. 2009 Mar;276(5):1233-54. doi: 10.1111/j.1742-4658.2008.06860.x.

8.

The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal.

Price DP, Nagarajan V, Churbanov A, Houde P, Milligan B, Drake LL, Gustafson JE, Hansen IA.

PLoS One. 2011;6(7):e22573. doi: 10.1371/journal.pone.0022573. Epub 2011 Jul 27.

9.

Role of an apical K,Cl cotransporter in urine formation by renal tubules of the yellow fever mosquito (Aedes aegypti).

Piermarini PM, Hine RM, Schepel M, Miyauchi J, Beyenbach KW.

Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1318-37. doi: 10.1152/ajpregu.00223.2011. Epub 2011 Aug 3.

10.

Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti.

Shiao SH, Hansen IA, Zhu J, Sieglaff DH, Raikhel AS.

J Insect Physiol. 2008 Jan;54(1):231-9. Epub 2007 Oct 2.

11.

Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes.

Isoe J, Collins J, Badgandi H, Day WA, Miesfeld RL.

Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):E211-7. doi: 10.1073/pnas.1102637108. Epub 2011 May 31.

12.

Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles.

Bryant B, Raikhel AS.

PLoS One. 2011;6(11):e25502. doi: 10.1371/journal.pone.0025502. Epub 2011 Nov 17.

13.

Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis.

Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Hediger MA.

J Exp Biol. 1997 Jan;200(Pt 2):269-86. Review.

14.

microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti.

Bryant B, Macdonald W, Raikhel AS.

Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22391-8. doi: 10.1073/pnas.1016230107. Epub 2010 Nov 29.

15.
16.

Novel dicarboxylate selectivity in an insect glutamate transporter homolog.

Wang H, Rascoe AM, Holley DC, Gouaux E, Kavanaugh MP.

PLoS One. 2013 Aug 7;8(8):e70947. doi: 10.1371/journal.pone.0070947. eCollection 2013.

18.

A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti.

Mane-Padros D, Cruz J, Cheng A, Raikhel AS.

PLoS One. 2012;7(9):e45019. doi: 10.1371/journal.pone.0045019. Epub 2012 Sep 26.

19.

Increased Akt signaling in the mosquito fat body increases adult survivorship.

Arik AJ, Hun LV, Quicke K, Piatt M, Ziegler R, Scaraffia PY, Badgandi H, Riehle MA.

FASEB J. 2015 Apr;29(4):1404-13. doi: 10.1096/fj.14-261479. Epub 2014 Dec 30.

20.

A novel eukaryotic Na+ methionine selective symporter is essential for mosquito development.

Meleshkevitch EA, Voronov DA, Miller MM, Penneda M, Fox JM, Metzler R, Boudko DY.

Insect Biochem Mol Biol. 2013 Aug;43(8):755-67. doi: 10.1016/j.ibmb.2013.05.008. Epub 2013 Jun 6.

Supplemental Content

Support Center