Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Constructing and testing the thermodynamic limits of synthetic NAD(P)H:H2 pathways.

Veit A, Akhtar MK, Mizutani T, Jones PR.

Microb Biotechnol. 2008 Sep;1(5):382-94. doi: 10.1111/j.1751-7915.2008.00033.x.

2.

Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3).

Akhtar MK, Jones PR.

Metab Eng. 2009 May;11(3):139-47. doi: 10.1016/j.ymben.2009.01.002.

PMID:
19558967
3.
4.
5.
6.

Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3).

Akhtar MK, Jones PR.

Appl Microbiol Biotechnol. 2008 Apr;78(5):853-62. doi: 10.1007/s00253-008-1377-6.

PMID:
18320190
7.
8.
9.
10.

Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.

Kim YM, Cho HS, Jung GY, Park JM.

Biotechnol Bioeng. 2011 Dec;108(12):2941-6. doi: 10.1002/bit.23259.

PMID:
21732330
12.

Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.

Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J.

Yeast. 2000 Mar 30;16(5):463-74.

13.

Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.

Canelas AB, van Gulik WM, Heijnen JJ.

Biotechnol Bioeng. 2008 Jul 1;100(4):734-43. doi: 10.1002/bit.21813.

PMID:
18383140
14.

High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain.

Lee HC, Kim JS, Jang W, Kim SY.

J Biotechnol. 2010 Aug 20;149(1-2):24-32. doi: 10.1016/j.jbiotec.2010.06.011.

PMID:
20600382
15.
18.

The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.

Olavarría K, Valdés D, Cabrera R.

FEBS J. 2012 Jul;279(13):2296-309. doi: 10.1111/j.1742-4658.2012.08610.x.

19.
20.
Items per page

Supplemental Content

Support Center