Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Thermodynamic stability of histone H3 is a necessary but not sufficient driving force for its evolutionary conservation.

Ramachandran S, Vogel L, Strahl BD, Dokholyan NV.

PLoS Comput Biol. 2011 Jan 6;7(1):e1001042. doi: 10.1371/journal.pcbi.1001042.

2.

Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.

Iwasaki W, Tachiwana H, Kawaguchi K, Shibata T, Kagawa W, Kurumizaka H.

Biochemistry. 2011 Sep 13;50(36):7822-32. doi: 10.1021/bi201021h. Epub 2011 Aug 17.

PMID:
21812398
3.
4.

Characterization of sequence variability in nucleosome core histone folds.

Sullivan SA, Landsman D.

Proteins. 2003 Aug 15;52(3):454-65.

PMID:
12866056
5.

Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae.

Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD.

Mol Cell Biol. 2005 Nov;25(22):10060-70.

6.

Evolution of histone H3: emergence of variants and conservation of post-translational modification sites.

Waterborg JH.

Biochem Cell Biol. 2012 Feb;90(1):79-95. doi: 10.1139/o11-036. Epub 2011 Sep 12.

PMID:
21910587
7.

Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications.

Wu T, Yuan T, Tsai SN, Wang C, Sun SM, Lam HM, Ngai SM.

BMC Plant Biol. 2009 Jul 31;9:98. doi: 10.1186/1471-2229-9-98.

8.

DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues.

DeNizio JE, Elsässer SJ, Black BE.

Nucleic Acids Res. 2014 Apr;42(7):4318-31. doi: 10.1093/nar/gku090. Epub 2014 Feb 3.

9.

Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription.

Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, Herskowitz I.

Genes Dev. 1995 Nov 15;9(22):2770-9.

10.

Post-translational modifications of Trypanosoma cruzi histone H4.

da Cunha JP, Nakayasu ES, de Almeida IC, Schenkman S.

Mol Biochem Parasitol. 2006 Dec;150(2):268-77. Epub 2006 Sep 18.

PMID:
17010453
11.

Differential contributions of histone H3 and H4 residues to heterochromatin structure.

Yu Q, Olsen L, Zhang X, Boeke JD, Bi X.

Genetics. 2011 Jun;188(2):291-308. doi: 10.1534/genetics.111.127886. Epub 2011 Mar 24.

12.
13.

Role of histone N-terminal tails and their acetylation in nucleosome dynamics.

Morales V, Richard-Foy H.

Mol Cell Biol. 2000 Oct;20(19):7230-7.

14.

Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import.

Blackwell JS Jr, Wilkinson ST, Mosammaparast N, Pemberton LF.

J Biol Chem. 2007 Jul 13;282(28):20142-50. Epub 2007 May 15.

15.
16.

Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.

Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T.

Nature. 2007 Mar 15;446(7133):338-41. Epub 2007 Feb 11.

PMID:
17293877
17.

A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin.

Sims JK, Houston SI, Magazinnik T, Rice JC.

J Biol Chem. 2006 May 5;281(18):12760-6. Epub 2006 Mar 3.

18.
19.

Structures of human nucleosomes containing major histone H3 variants.

Tachiwana H, Osakabe A, Shiga T, Miya Y, Kimura H, Kagawa W, Kurumizaka H.

Acta Crystallogr D Biol Crystallogr. 2011 Jun;67(Pt 6):578-83. doi: 10.1107/S0907444911014818. Epub 2011 May 17.

PMID:
21636898
20.

Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast.

Yu C, Palumbo MJ, Lawrence CE, Morse RH.

J Biol Chem. 2006 Apr 7;281(14):9755-64. Epub 2006 Feb 4.

Supplemental Content

Support Center