Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos.

Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Schoenfeld D, Meng H, Lin S, Wang X, Wang M, Ji Z, Zink JI, Mädler L, Castranova V, Lin S, Nel AE.

ACS Nano. 2011 Feb 22;5(2):1223-35. doi: 10.1021/nn1028482. Epub 2011 Jan 20.

2.

Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio).

Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJ.

Environ Toxicol Chem. 2014 Dec;33(12):2859-68. doi: 10.1002/etc.2758. Epub 2014 Oct 27.

PMID:
25244315
3.

Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.

Sayes CM, Reed KL, Warheit DB.

Toxicol Sci. 2007 May;97(1):163-80. Epub 2007 Feb 14.

PMID:
17301066
4.

Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures?

Warheit DB, Sayes CM, Reed KL.

Environ Sci Technol. 2009 Oct 15;43(20):7939-45. doi: 10.1021/es901453p.

PMID:
19921917
5.

Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.

Zhao X, Wang S, Wu Y, You H, Lv L.

Aquat Toxicol. 2013 Jul 15;136-137:49-59. doi: 10.1016/j.aquatox.2013.03.019. Epub 2013 Apr 10.

PMID:
23643724
6.

Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis.

Choi JS, Kim RO, Yoon S, Kim WK.

PLoS One. 2016 Aug 9;11(8):e0160763. doi: 10.1371/journal.pone.0160763. eCollection 2016.

7.

Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping.

George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L, Nel AE.

ACS Nano. 2010 Jan 26;4(1):15-29. doi: 10.1021/nn901503q.

8.

Evidence for Fe(2+) in wurtzite coordination: iron doping stabilizes ZnO nanoparticles.

Xiao J, Kuc A, Pokhrel S, Schowalter M, Parlapalli S, Rosenauer A, Frauenheim T, Mädler L, Pettersson LG, Heine T.

Small. 2011 Oct 17;7(20):2879-86. doi: 10.1002/smll.201100963. Epub 2011 Sep 12.

PMID:
21913325
9.

Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials.

George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE.

ACS Nano. 2011 Mar 22;5(3):1805-17. doi: 10.1021/nn102734s. Epub 2011 Feb 16.

10.

Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio).

Chen TH, Lin CC, Meng PJ.

J Hazard Mater. 2014 Jul 30;277:134-40. doi: 10.1016/j.jhazmat.2013.12.030. Epub 2013 Dec 25.

PMID:
24424259
11.

Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model.

Hu YL, Qi W, Han F, Shao JZ, Gao JQ.

Int J Nanomedicine. 2011;6:3351-9. doi: 10.2147/IJN.S25853. Epub 2011 Dec 14.

12.

NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung.

Lee SH, Wang TY, Hong JH, Cheng TJ, Lin CY.

Nanotoxicology. 2016 Sep;10(7):924-34. doi: 10.3109/17435390.2016.1144825. Epub 2016 Mar 8.

PMID:
27245357
13.

Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008 Feb 15;43(3):278-84. doi: 10.1080/10934520701792779.

PMID:
18205059
14.

Application of embryonic and adult zebrafish for nanotoxicity assessment.

Wang J, Zhu X, Chen Y, Chang Y.

Methods Mol Biol. 2012;926:317-29. doi: 10.1007/978-1-62703-002-1_20.

PMID:
22975972
15.

Evaluation of Pulmonary Toxicity of Zinc Oxide Nanoparticles Following Inhalation and Intratracheal Instillation.

Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, Yamamoto K, Kitajima S, Kuroda E, Kawaguchi K, Sasaki T.

Int J Mol Sci. 2016 Aug 1;17(8). pii: E1241. doi: 10.3390/ijms17081241.

16.

Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity.

Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS.

Toxicol Sci. 2012 Feb;125(2):462-72. doi: 10.1093/toxsci/kfr319. Epub 2011 Nov 23.

PMID:
22112499
17.

Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories.

Jacobsen NR, Stoeger T, van den Brule S, Saber AT, Beyerle A, Vietti G, Mortensen A, Szarek J, Budtz HC, Kermanizadeh A, Banerjee A, Ercal N, Vogel U, Wallin H, Møller P.

Food Chem Toxicol. 2015 Nov;85:84-95. doi: 10.1016/j.fct.2015.08.008. Epub 2015 Aug 7.

18.

Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media.

Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EM.

Environ Sci Technol. 2011 Jan 15;45(2):755-61. doi: 10.1021/es102266g. Epub 2010 Dec 6.

PMID:
21133426
19.

The fate of ZnO nanoparticles administered to human bronchial epithelial cells.

Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE.

ACS Nano. 2012 Jun 26;6(6):4921-30. doi: 10.1021/nn300425a. Epub 2012 Jun 7.

20.

The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn.

Chen X, O'Halloran J, Jansen MA.

Aquat Toxicol. 2016 May;174:46-53. doi: 10.1016/j.aquatox.2016.02.012. Epub 2016 Feb 20.

PMID:
26918949

Supplemental Content

Support Center