Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism.

Hussman JP, Chung RH, Griswold AJ, Jaworski JM, Salyakina D, Ma D, Konidari I, Whitehead PL, Vance JM, Martin ER, Cuccaro ML, Gilbert JR, Haines JL, Pericak-Vance MA.

Mol Autism. 2011 Jan 19;2(1):1. doi: 10.1186/2040-2392-2-1.

2.

Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

Correia C, Oliveira G, Vicente AM.

PLoS One. 2014 Nov 19;9(11):e112399. doi: 10.1371/journal.pone.0112399. eCollection 2014.

3.

Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants.

Griswold AJ, Dueker ND, Van Booven D, Rantus JA, Jaworski JM, Slifer SH, Schmidt MA, Hulme W, Konidari I, Whitehead PL, Cuccaro ML, Martin ER, Haines JL, Gilbert JR, Hussman JP, Pericak-Vance MA.

Mol Autism. 2015 Jul 7;6:43. doi: 10.1186/s13229-015-0034-z. eCollection 2015.

4.

GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis.

Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, Haines JL, Pericak-Vance MA.

Genes Immun. 2016 Jul;17(5):305-12. doi: 10.1038/gene.2016.23. Epub 2016 Jun 9.

5.

SNP-based pathway enrichment analysis for genome-wide association studies.

Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, Xie X.

BMC Bioinformatics. 2011 Apr 15;12:99. doi: 10.1186/1471-2105-12-99.

6.

Pathway-based analysis using reduced gene subsets in genome-wide association studies.

Zhao J, Gupta S, Seielstad M, Liu J, Thalamuthu A.

BMC Bioinformatics. 2011 Jan 12;12:17. doi: 10.1186/1471-2105-12-17.

7.

Allowing for sex differences increases power in a GWAS of multiplex Autism families.

Lu AT, Cantor RM.

Mol Psychiatry. 2012 Feb;17(2):215-22. doi: 10.1038/mp.2010.127. Epub 2010 Dec 14.

PMID:
21151189
8.

A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism.

Carayol J, Schellenberg GD, Dombroski B, Amiet C, Génin B, Fontaine K, Rousseau F, Vazart C, Cohen D, Frazier TW, Hardan AY, Dawson G, Rio Frio T.

Front Genet. 2014 Feb 18;5:33. doi: 10.3389/fgene.2014.00033. eCollection 2014.

9.

An open access database of genome-wide association results.

Johnson AD, O'Donnell CJ.

BMC Med Genet. 2009 Jan 22;10:6. doi: 10.1186/1471-2350-10-6.

10.

A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.

Wang YT, Sung PY, Lin PL, Yu YW, Chung RH.

BMC Genomics. 2015 May 15;16:381. doi: 10.1186/s12864-015-1620-3.

11.

Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia.

Jia P, Wang L, Fanous AH, Pato CN, Edwards TL; International Schizophrenia Consortium, Zhao Z.

PLoS Comput Biol. 2012;8(7):e1002587. doi: 10.1371/journal.pcbi.1002587. Epub 2012 Jul 5.

12.

The genetics of autism.

Muhle R, Trentacoste SV, Rapin I.

Pediatrics. 2004 May;113(5):e472-86. Review.

PMID:
15121991
13.

Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets.

Saeed M.

Immunogenetics. 2017 May;69(5):295-302. doi: 10.1007/s00251-017-0976-8. Epub 2017 Feb 28.

14.

Genetic analysis of biological pathway data through genomic randomization.

Yaspan BL, Bush WS, Torstenson ES, Ma D, Pericak-Vance MA, Ritchie MD, Sutcliffe JS, Haines JL.

Hum Genet. 2011 May;129(5):563-71. doi: 10.1007/s00439-011-0956-2. Epub 2011 Jan 30.

15.

Using Fisher's method with PLINK 'LD clumped' output to compare SNP effects across Genome-wide Association Study (GWAS) datasets.

Shi H, Medway C, Brown K, Kalsheker N, Morgan K.

Int J Mol Epidemiol Genet. 2011 Jan 1;2(1):30-5. Epub 2010 Nov 25.

16.

Pathway analysis for a genome-wide association study of pneumoconiosis.

Wang T, Yang J, Ji X, Chu M, Zhang R, Dai J, Jin G, Hu Z, Shen H, Ni C.

Toxicol Lett. 2015 Jan 5;232(1):284-92. doi: 10.1016/j.toxlet.2014.10.028. Epub 2014 Nov 4.

PMID:
25445010
17.
18.

Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes.

Hutcheson HB, Olson LM, Bradford Y, Folstein SE, Santangelo SL, Sutcliffe JS, Haines JL.

BMC Med Genet. 2004 May 5;5:12.

19.

GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS.

Hoppmann AS, Schlosser P, Backofen R, Lausch E, Köttgen A.

PLoS One. 2016 Sep 9;11(9):e0162466. doi: 10.1371/journal.pone.0162466. eCollection 2016.

20.

Genome-wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population.

Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, Louis ED, Cote LJ, Andrews H, Waters C, Ford B, Frucht S, Fahn S, Marder K, Clark LN, Lee JH.

BMC Med Genet. 2011 Aug 3;12:104. doi: 10.1186/1471-2350-12-104.

Supplemental Content

Support Center