Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Proteome-wide systems analysis of a cellulosic biofuel-producing microbe.

Tolonen AC, Haas W, Chilaka AC, Aach J, Gygi SP, Church GM.

Mol Syst Biol. 2011 Jan 18;7:461. doi: 10.1038/msb.2010.116.

2.

Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

Lubieniechi S, Peranantham T, Levin DB.

Recent Pat DNA Gene Seq. 2013 Apr 1;7(1):25-35. Review.

PMID:
22779440
3.

Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.

Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R.

BMC Microbiol. 2012 Sep 21;12:214. doi: 10.1186/1471-2180-12-214.

4.

Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC.

PLoS Genet. 2014 Nov 13;10(11):e1004773. doi: 10.1371/journal.pgen.1004773.

5.

Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.

Yang X, Xu M, Yang ST.

Metab Eng. 2015 Nov;32:39-48. doi: 10.1016/j.ymben.2015.09.001.

PMID:
26365585
7.

Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels.

Petit E, Coppi MV, Hayes JC, Tolonen AC, Warnick T, Latouf WG, Amisano D, Biddle A, Mukherjee S, Ivanova N, Lykidis A, Land M, Hauser L, Kyrpides N, Henrissat B, Lau J, Schnell DJ, Church GM, Leschine SB, Blanchard JL.

PLoS One. 2015 Jun 2;10(6):e0118285. doi: 10.1371/journal.pone.0118285.

8.

Simultaneous saccharification and fermentation of hemicellulose to butanol by a non-sporulating Clostridium species.

Li T, He J.

Bioresour Technol. 2016 Nov;219:430-8. doi: 10.1016/j.biortech.2016.07.138.

PMID:
27513648
9.

Population level analysis of evolved mutations underlying improvements in plant hemicellulose and cellulose fermentation by Clostridium phytofermentans.

Mukherjee S, Thompson LK, Godin S, Schackwitz W, Lipzen A, Martin J, Blanchard JL.

PLoS One. 2014 Jan 22;9(1):e86731. doi: 10.1371/journal.pone.0086731.

10.

Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans.

Tolonen AC, Zuroff TR, Ramya M, Boutard M, Cerisy T, Curtis WR.

Appl Environ Microbiol. 2015 Aug 15;81(16):5440-8. doi: 10.1128/AEM.00619-15.

11.

Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.

Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR.

PLoS One. 2009;4(4):e5271. doi: 10.1371/journal.pone.0005271.

12.

The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.

Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JH, Yang F, Glass NL.

Fungal Genet Biol. 2014 Nov;72:21-33. doi: 10.1016/j.fgb.2014.05.005.

13.

Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production.

Hemme CL, Mouttaki H, Lee YJ, Zhang G, Goodwin L, Lucas S, Copeland A, Lapidus A, Glavina del Rio T, Tice H, Saunders E, Brettin T, Detter JC, Han CS, Pitluck S, Land ML, Hauser LJ, Kyrpides N, Mikhailova N, He Z, Wu L, Van Nostrand JD, Henrissat B, He Q, Lawson PA, Tanner RS, Lynd LR, Wiegel J, Fields MW, Arkin AP, Schadt CW, Stevenson BS, McInerney MJ, Yang Y, Dong H, Xing D, Ren N, Wang A, Huhnke RL, Mielenz JR, Ding SY, Himmel ME, Taghavi S, van der Lelie D, Rubin EM, Zhou J.

J Bacteriol. 2010 Dec;192(24):6494-6. doi: 10.1128/JB.01064-10.

15.

Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

Fathima AA, Sanitha M, Kumar T, Iyappan S, Ramya M.

Bioresour Technol. 2016 Feb;202:253-6. doi: 10.1016/j.biortech.2015.11.075.

PMID:
26705954
16.

Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus.

Gardner JG, Keating DH.

Appl Environ Microbiol. 2010 Aug;76(15):5079-87. doi: 10.1128/AEM.00454-10.

17.

Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.

Kumar R, Singh S, Singh OV.

J Ind Microbiol Biotechnol. 2008 May;35(5):377-91. doi: 10.1007/s10295-008-0327-8. Review.

PMID:
18338189
18.

Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3.

Xin F, Wu YR, He J.

Appl Environ Microbiol. 2014 Aug;80(15):4771-8. doi: 10.1128/AEM.00337-14.

19.

Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast.

Wei N, Quarterman J, Kim SR, Cate JH, Jin YS.

Nat Commun. 2013;4:2580. doi: 10.1038/ncomms3580.

PMID:
24105024
20.

Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367.

Tolonen AC, Chilaka AC, Church GM.

Mol Microbiol. 2009 Dec;74(6):1300-13. doi: 10.1111/j.1365-2958.2009.06890.x.

Items per page

Supplemental Content

Support Center