Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 173

1.

Clinical pharmacokinetics of metformin.

Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM.

Clin Pharmacokinet. 2011 Feb;50(2):81-98. doi: 10.2165/11534750-000000000-00000. Review.

PMID:
21241070
2.

Pharmacogenetic variation and metformin response.

Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, Ding L, Zhang J, Wen A.

Curr Drug Metab. 2013 Dec;14(10):1070-82. Review.

PMID:
24329113
3.

SLC47A1 gene rs2289669 G>A variants enhance the glucose-lowering effect of metformin via delaying its excretion in Chinese type 2 diabetes patients.

He R, Zhang D, Lu W, Zheng T, Wan L, Liu F, Jia W.

Diabetes Res Clin Pract. 2015 Jul;109(1):57-63. doi: 10.1016/j.diabres.2015.05.003. Epub 2015 May 11.

PMID:
26004431
4.

Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function.

Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, Timmins P, Graham GG, Furlong TJ, Greenfield JR, Williams KM, Day RO.

Clin Pharmacokinet. 2013 May;52(5):373-84. doi: 10.1007/s40262-013-0046-9.

PMID:
23475568
5.

Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects.

Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB.

AAPS J. 2013 Apr;15(2):571-80. doi: 10.1208/s12248-013-9460-z. Epub 2013 Feb 16.

6.

The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin.

Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, Sabolić I, Koepsell H, Brockmöller J.

Clin Pharmacol Ther. 2009 Sep;86(3):299-306. doi: 10.1038/clpt.2009.92. Epub 2009 Jun 17.

PMID:
19536068
7.

Trimethoprim-metformin interaction and its genetic modulation by OCT2 and MATE1 transporters.

Grün B, Kiessling MK, Burhenne J, Riedel KD, Weiss J, Rauch G, Haefeli WE, Czock D.

Br J Clin Pharmacol. 2013 Nov;76(5):787-96. doi: 10.1111/bcp.12079.

8.

Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients.

Hou W, Zhang D, Lu W, Zheng T, Wan L, Li Q, Bao Y, Liu F, Jia W.

Mol Diagn Ther. 2015 Feb;19(1):25-33. doi: 10.1007/s40291-014-0126-z.

PMID:
25573751
9.

Clinical pharmacokinetics of metformin.

Scheen AJ.

Clin Pharmacokinet. 1996 May;30(5):359-71. Review.

PMID:
8743335
10.

A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin.

Christensen MM, Pedersen RS, Stage TB, Brasch-Andersen C, Nielsen F, Damkier P, Beck-Nielsen H, Brøsen K.

Pharmacogenet Genomics. 2013 Oct;23(10):526-34. doi: 10.1097/FPC.0b013e328364a57d.

PMID:
23873119
11.

Disposition of metformin: variability due to polymorphisms of organic cation transporters.

Zolk O.

Ann Med. 2012 Mar;44(2):119-29. doi: 10.3109/07853890.2010.549144. Epub 2011 Mar 3. Review.

PMID:
21366511
12.

Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin.

Chen EC, Liang X, Yee SW, Geier EG, Stocker SL, Chen L, Giacomini KM.

Mol Pharmacol. 2015 Jul;88(1):75-83. doi: 10.1124/mol.114.096776. Epub 2015 Apr 28.

13.

The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin.

Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, Ramirez AH, Roden DM, Wilke RA, McCarty CA, Davis RL, Brett CM, Giacomini KM.

Clin Pharmacol Ther. 2013 Feb;93(2):186-94. doi: 10.1038/clpt.2012.210. Epub 2012 Oct 17.

14.

Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus.

Hong Y, Rohatagi S, Habtemariam B, Walker JR, Schwartz SL, Mager DE.

J Clin Pharmacol. 2008 Jun;48(6):696-707. doi: 10.1177/0091270008316884. Epub 2008 Mar 27.

PMID:
18372428
15.

Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver.

Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, Zanger UM, Keppler D, Schwab M, Schaeffeler E.

Hepatology. 2009 Oct;50(4):1227-40. doi: 10.1002/hep.23103.

PMID:
19591196
16.

Pharmacokinetics of oral antihyperglycaemic agents in patients with renal insufficiency.

Harrower AD.

Clin Pharmacokinet. 1996 Aug;31(2):111-9. Review.

PMID:
8853933
17.

Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin.

Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K.

Mol Pharmacol. 2009 Jun;75(6):1280-6. doi: 10.1124/mol.109.056242. Epub 2009 Mar 30.

18.

Population PK/PD analysis of metformin using the signal transduction model.

Chae JW, Baek IH, Lee BY, Cho SK, Kwon KI.

Br J Clin Pharmacol. 2012 Nov;74(5):815-23. doi: 10.1111/j.1365-2125.2012.04260.x.

19.

The MATE1 rs2289669 polymorphism affects the renal clearance of metformin following ranitidine treatment.

Cho SK, Chung JY.

Int J Clin Pharmacol Ther. 2016 Apr;54(4):253-62. doi: 10.5414/CP202473.

PMID:
26784938
20.

Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients.

Tarasova L, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-Zake L, Fridmanis D, Vaivade I, Pirags V, Klovins J.

Pharmacogenet Genomics. 2012 Sep;22(9):659-66. doi: 10.1097/FPC.0b013e3283561666.

PMID:
22735389

Supplemental Content

Support Center