Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model.

Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G, Calcagno E, Morello N, Landsberger N, Biffo S, Pizzorusso T, Giustetto M, Broccoli V.

Hum Mol Genet. 2011 Mar 15;20(6):1182-96. doi: 10.1093/hmg/ddq563. Epub 2011 Jan 6.

PMID:
21212100
2.

miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes.

Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, Itoh M, Uesaka M, Imamura T, Nakahata Y, Yamashita Y, Abe T, Takamori S, Nakashima K.

Cell Rep. 2015 Sep 22;12(11):1887-901. doi: 10.1016/j.celrep.2015.08.028. Epub 2015 Sep 3.

3.

Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation.

Jentarra GM, Olfers SL, Rice SG, Srivastava N, Homanics GE, Blue M, Naidu S, Narayanan V.

BMC Neurosci. 2010 Feb 17;11:19. doi: 10.1186/1471-2202-11-19.

4.

Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice.

Chen RZ, Akbarian S, Tudor M, Jaenisch R.

Nat Genet. 2001 Mar;27(3):327-31.

PMID:
11242118
5.

Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome.

Filosa S, Pecorelli A, D'Esposito M, Valacchi G, Hajek J.

Free Radic Biol Med. 2015 Nov;88(Pt A):81-90. doi: 10.1016/j.freeradbiomed.2015.04.019. Epub 2015 May 8. Review.

PMID:
25960047
6.

Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene.

Pitcher MR, Herrera JA, Buffington SA, Kochukov MY, Merritt JK, Fisher AR, Schanen NC, Costa-Mattioli M, Neul JL.

Hum Mol Genet. 2015 May 1;24(9):2662-72. doi: 10.1093/hmg/ddv030. Epub 2015 Jan 29.

7.

MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution.

Kaufmann WE, Johnston MV, Blue ME.

Brain Dev. 2005 Nov;27 Suppl 1:S77-S87. Epub 2005 Sep 22. Review.

PMID:
16182491
8.

MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

Conti V, Gandaglia A, Galli F, Tirone M, Bellini E, Campana L, Kilstrup-Nielsen C, Rovere-Querini P, Brunelli S, Landsberger N.

PLoS One. 2015 Jun 22;10(6):e0130183. doi: 10.1371/journal.pone.0130183. eCollection 2015.

9.

Regulation mechanism and research progress of MeCP2 in Rett syndrome.

Yang W, Pan H.

Yi Chuan. 2014 Jul;36(7):625-30. doi: 10.3724/SP.J.1005.2014.0625. Review.

PMID:
25076025
10.

Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons.

Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok SM, Feldman DA, Bateup HS, Gao Q, Hockemeyer D, Mitalipova M, Lewis CA, Vander Heiden MG, Sur M, Young RA, Jaenisch R.

Cell Stem Cell. 2013 Oct 3;13(4):446-58. doi: 10.1016/j.stem.2013.09.001.

11.

FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice.

Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, Pevsner J, Dissen GA, Sherman LS, Ojeda SR.

Hum Mol Genet. 2007 Mar 15;16(6):640-50. Epub 2007 Feb 19.

PMID:
17309881
12.

Defects in brainstem neurons associated with breathing and motor function in the Mecp2R168X/Y mouse model of Rett syndrome.

Johnson CM, Zhong W, Cui N, Wu Y, Xing H, Zhang S, Jiang C.

Am J Physiol Cell Physiol. 2016 Dec 1;311(6):C895-C909. doi: 10.1152/ajpcell.00132.2016. Epub 2016 Sep 21.

PMID:
27653984
13.

Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice.

Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T.

Biol Psychiatry. 2010 Apr 1;67(7):657-65. doi: 10.1016/j.biopsych.2009.12.022. Epub 2010 Feb 20.

PMID:
20172507
14.

Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome.

Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, Zhang W.

J Neurophysiol. 2008 Jan;99(1):112-21. Epub 2007 Nov 21.

15.

MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain.

Nguyen MV, Du F, Felice CA, Shan X, Nigam A, Mandel G, Robinson JK, Ballas N.

J Neurosci. 2012 Jul 18;32(29):10021-34. doi: 10.1523/JNEUROSCI.1316-12.2012.

16.

MeCP2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder.

Liao W, Gandal MJ, Ehrlichman RS, Siegel SJ, Carlson GC.

Neurobiol Dis. 2012 Apr;46(1):88-92. doi: 10.1016/j.nbd.2011.12.048. Epub 2012 Jan 9.

17.

A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome.

Schmid DA, Yang T, Ogier M, Adams I, Mirakhur Y, Wang Q, Massa SM, Longo FM, Katz DM.

J Neurosci. 2012 Feb 1;32(5):1803-10. doi: 10.1523/JNEUROSCI.0865-11.2012. Erratum in: J Neurosci. 2014 Jan 29;34(5):2012.

18.

The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression.

Chang Q, Khare G, Dani V, Nelson S, Jaenisch R.

Neuron. 2006 Feb 2;49(3):341-8.

19.

Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis.

Alvarez-Saavedra M, Sáez MA, Kang D, Zoghbi HY, Young JI.

Hum Mol Genet. 2007 Oct 1;16(19):2315-25. Epub 2007 Jul 17.

PMID:
17635839
20.

Ube3a expression is not altered in Mecp2 mutant mice.

Jordan C, Francke U.

Hum Mol Genet. 2006 Jul 15;15(14):2210-5. Epub 2006 Jun 5.

PMID:
16754645

Supplemental Content

Support Center