Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule.

Feric M, Zhao B, Hoffert JD, Pisitkun T, Knepper MA.

Am J Physiol Cell Physiol. 2011 Apr;300(4):C755-70. doi: 10.1152/ajpcell.00360.2010. Epub 2011 Jan 5.

2.

Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS.

Tchapyjnikov D, Li Y, Pisitkun T, Hoffert JD, Yu MJ, Knepper MA.

Physiol Genomics. 2010 Feb 4;40(3):167-83. doi: 10.1152/physiolgenomics.00148.2009. Epub 2009 Dec 8.

3.

Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells.

Gunaratne R, Braucht DW, Rinschen MM, Chou CL, Hoffert JD, Pisitkun T, Knepper MA.

Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15653-8. doi: 10.1073/pnas.1007424107. Epub 2010 Aug 16.

4.

Long-term regulation of renal Na-dependent cotransporters and ENaC: response to altered acid-base intake.

Kim GH, Martin SW, Fernández-Llama P, Masilamani S, Packer RK, Knepper MA.

Am J Physiol Renal Physiol. 2000 Sep;279(3):F459-67.

5.

Proteomic profiling of the mitochondrial inner membrane of rat renal proximal convoluted tubules.

Freund DM, Prenni JE, Curthoys NP.

Proteomics. 2013 Aug;13(16):2495-9. doi: 10.1002/pmic.201200558.

6.

Differential expression of Na+-Cl- cotransporter and Na+-K+-Cl- cotransporter 2 in the distal nephrons of euryhaline and seawater pufferfishes.

Kato A, Muro T, Kimura Y, Li S, Islam Z, Ogoshi M, Doi H, Hirose S.

Am J Physiol Regul Integr Comp Physiol. 2011 Feb;300(2):R284-97. doi: 10.1152/ajpregu.00725.2009. Epub 2010 Nov 17.

7.

Analysis of the phosphoproteome of the multicellular bacterium Streptomyces coelicolor A3(2) by protein/peptide fractionation, phosphopeptide enrichment and high-accuracy mass spectrometry.

Parker JL, Jones AM, Serazetdinova L, Saalbach G, Bibb MJ, Naldrett MJ.

Proteomics. 2010 Jul;10(13):2486-97. doi: 10.1002/pmic.201000090. Erratum in: Proteomics. 2010 Aug;10(16):3056.

PMID:
20432484
8.

Large-scale proteomics and phosphoproteomics of urinary exosomes.

Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA.

J Am Soc Nephrol. 2009 Feb;20(2):363-79. doi: 10.1681/ASN.2008040406. Epub 2008 Dec 3.

9.

Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.

Han D, Moon S, Kim Y, Ho WK, Kim K, Kang Y, Jun H, Kim Y.

J Proteome Res. 2012 Apr 6;11(4):2206-23. doi: 10.1021/pr200990b. Epub 2012 Mar 14.

PMID:
22276854
10.

Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites.

Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA.

Proc Natl Acad Sci U S A. 2006 May 2;103(18):7159-64. Epub 2006 Apr 25.

11.
12.

Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron.

Obermüller N, Kunchaparty S, Ellison DH, Bachmann S.

J Clin Invest. 1996 Aug 1;98(3):635-40.

13.

Proteomic analysis of brush-border membrane vesicles isolated from purified proximal convoluted tubules.

Walmsley SJ, Broeckling C, Hess A, Prenni J, Curthoys NP.

Am J Physiol Renal Physiol. 2010 Jun;298(6):F1323-31. doi: 10.1152/ajprenal.00711.2009. Epub 2010 Mar 10.

14.

Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides.

Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS.

J Microbiol. 2015 Apr;53(4):279-87. doi: 10.1007/s12275-015-5021-8. Epub 2015 Apr 8.

PMID:
25845541
15.

Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean.

Meyer LJ, Gao J, Xu D, Thelen JJ.

Plant Physiol. 2012 May;159(1):517-28. doi: 10.1104/pp.111.191700. Epub 2012 Mar 22.

16.

Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct.

Yu MJ, Pisitkun T, Wang G, Aranda JF, Gonzales PA, Tchapyjnikov D, Shen RF, Alonso MA, Knepper MA.

Am J Physiol Cell Physiol. 2008 Sep;295(3):C661-78. doi: 10.1152/ajpcell.90650.2007. Epub 2008 Jul 2.

17.

Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.

Han G, Ye M, Liu H, Song C, Sun D, Wu Y, Jiang X, Chen R, Wang C, Wang L, Zou H.

Electrophoresis. 2010 Mar;31(6):1080-9. doi: 10.1002/elps.200900493.

PMID:
20166139
18.

Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.

Ge R, Sun X, Xiao C, Yin X, Shan W, Chen Z, He QY.

Proteomics. 2011 Apr;11(8):1449-61. doi: 10.1002/pmic.201000649. Epub 2011 Feb 25.

PMID:
21360674
19.

Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.

Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M.

Mol Cell Proteomics. 2008 Feb;7(2):299-307. Epub 2007 Oct 15.

20.

Effect of 2MEGA labeling on membrane proteome analysis using LC-ESI QTOF MS.

Ji C, Lo A, Marcus S, Li L.

J Proteome Res. 2006 Oct;5(10):2567-76.

PMID:
17022628

Supplemental Content

Support Center