Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Cocaine analog coupled to disrupted adenovirus: a vaccine strategy to evoke high-titer immunity against addictive drugs.

Hicks MJ, De BP, Rosenberg JB, Davidson JT, Moreno AY, Janda KD, Wee S, Koob GF, Hackett NR, Kaminsky SM, Worgall S, Toth M, Mezey JG, Crystal RG.

Mol Ther. 2011 Mar;19(3):612-9. doi: 10.1038/mt.2010.280. Epub 2011 Jan 4.

2.

Disrupted adenovirus-based vaccines against small addictive molecules circumvent anti-adenovirus immunity.

De BP, Pagovich OE, Hicks MJ, Rosenberg JB, Moreno AY, Janda KD, Koob GF, Worgall S, Kaminsky SM, Sondhi D, Crystal RG.

Hum Gene Ther. 2013 Jan;24(1):58-66. doi: 10.1089/hum.2012.163. Epub 2012 Dec 21.

3.

Anti-cocaine vaccine based on coupling a cocaine analog to a disrupted adenovirus.

Koob G, Hicks MJ, Wee S, Rosenberg JB, De BP, Kaminsky SM, Moreno A, Janda KD, Crystal RG.

CNS Neurol Disord Drug Targets. 2011 Dec;10(8):899-904. Review.

4.

Combined cocaine hydrolase gene transfer and anti-cocaine vaccine synergistically block cocaine-induced locomotion.

Carroll ME, Zlebnik NE, Anker JJ, Kosten TR, Orson FM, Shen X, Kinsey B, Parks RJ, Gao Y, Brimijoin S.

PLoS One. 2012;7(8):e43536. doi: 10.1371/journal.pone.0043536. Epub 2012 Aug 17.

5.

Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects.

Wee S, Hicks MJ, De BP, Rosenberg JB, Moreno AY, Kaminsky SM, Janda KD, Crystal RG, Koob GF.

Neuropsychopharmacology. 2012 Apr;37(5):1083-91. doi: 10.1038/npp.2011.200. Epub 2011 Sep 14.

6.

AAVrh.10-mediated expression of an anti-cocaine antibody mediates persistent passive immunization that suppresses cocaine-induced behavior.

Rosenberg JB, Hicks MJ, De BP, Pagovich O, Frenk E, Janda KD, Wee S, Koob GF, Hackett NR, Kaminsky SM, Worgall S, Tignor N, Mezey JG, Crystal RG.

Hum Gene Ther. 2012 May;23(5):451-9. doi: 10.1089/hum.2011.178.

7.

Adenovirus capsid-based anti-cocaine vaccine prevents cocaine from binding to the nonhuman primate CNS dopamine transporter.

Maoz A, Hicks MJ, Vallabhjosula S, Synan M, Kothari PJ, Dyke JP, Ballon DJ, Kaminsky SM, De BP, Rosenberg JB, Martinez D, Koob GF, Janda KD, Crystal RG.

Neuropsychopharmacology. 2013 Oct;38(11):2170-8. doi: 10.1038/npp.2013.114. Epub 2013 May 10.

8.

Hapten optimization for cocaine vaccine with improved cocaine recognition.

Ramakrishnan M, Kinsey BM, Singh RA, Kosten TR, Orson FM.

Chem Biol Drug Des. 2014 Sep;84(3):354-63. doi: 10.1111/cbdd.12326. Epub 2014 Jul 29.

9.

Optimization of capsid-incorporated antigens for a novel adenovirus vaccine approach.

Matthews QL, Yang P, Wu Q, Belousova N, Rivera AA, Stoff-Khalili MA, Waehler R, Hsu HC, Li Z, Li J, Mountz JD, Wu H, Curiel DT.

Virol J. 2008 Aug 21;5:98. doi: 10.1186/1743-422X-5-98.

10.

Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE anticocaine vaccine.

Hicks MJ, Kaminsky SM, De BP, Rosenberg JB, Evans SM, Foltin RW, Andrenyak DM, Moody DE, Koob GF, Janda KD, Ricart Arbona RJ, Lepherd ML, Crystal RG.

Hum Gene Ther Clin Dev. 2014 Mar;25(1):40-9. doi: 10.1089/humc.2013.231.

11.

Suppression of nicotine-induced pathophysiology by an adenovirus hexon-based antinicotine vaccine.

Rosenberg JB, De BP, Hicks MJ, Janda KD, Kaminsky SM, Worgall S, Crystal RG.

Hum Gene Ther. 2013 Jun;24(6):595-603. doi: 10.1089/hum.2012.245.

12.

Different doses of adenoviral vector expressing IL-12 enhance or depress the immune response to a coadministered antigen: the role of nitric oxide.

Lasarte JJ, Corrales FJ, Casares N, López-Díaz de Cerio A, Qian C, Xie X, Borrás-Cuesta F, Prieto J.

J Immunol. 1999 May 1;162(9):5270-7.

13.

Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.

Crosby CM, Nehete P, Sastry KJ, Barry MA.

J Virol. 2015 Jan;89(1):669-75. doi: 10.1128/JVI.02184-14. Epub 2014 Oct 29.

14.

Reductive amination as a strategy to reduce adenovirus vector promiscuity by chemical capsid modification with large polysaccharides.

Espenlaub S, Wortmann A, Engler T, Corjon S, Kochanek S, Kreppel F.

J Gene Med. 2008 Dec;10(12):1303-14. doi: 10.1002/jgm.1262.

PMID:
18837065
15.

Efficacy of a therapeutic cocaine vaccine in rodent models.

Fox BS, Kantak KM, Edwards MA, Black KM, Bollinger BK, Botka AJ, French TL, Thompson TL, Schad VC, Greenstein JL, Gefter ML, Exley MA, Swain PA, Briner TJ.

Nat Med. 1996 Oct;2(10):1129-32.

PMID:
8837612
18.

Psychomotor stimulant effects of cocaine in rats and 15 mouse strains.

Thomsen M, Caine SB.

Exp Clin Psychopharmacol. 2011 Oct;19(5):321-41. doi: 10.1037/a0024798.

19.

Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses.

Worgall S, Busch A, Rivara M, Bonnyay D, Leopold PL, Merritt R, Hackett NR, Rovelink PW, Bruder JT, Wickham TJ, Kovesdi I, Crystal RG.

J Virol. 2004 Mar;78(5):2572-80.

20.

Anti-cocaine vaccine development.

Kinsey BM, Kosten TR, Orson FM.

Expert Rev Vaccines. 2010 Sep;9(9):1109-14. doi: 10.1586/erv.10.102. Review.

Supplemental Content

Support Center