Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104


Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.

Chen S, Jonas F, Shen C, Hilgenfeld R.

Protein Cell. 2010 Jan;1(1):59-74. doi: 10.1007/s13238-010-0011-4. Epub 2010 Feb 7. Erratum in: Protein Cell. 2010 Mar;1(3):307. Higenfeld, Rolf [corrected to Hilgenfeld, Rolf].


Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.

Muramatsu T, Kim YT, Nishii W, Terada T, Shirouzu M, Yokoyama S.

FEBS J. 2013 May;280(9):2002-13. doi: 10.1111/febs.12222. Epub 2013 Mar 27.


Activation and maturation of SARS-CoV main protease.

Xia B, Kang X.

Protein Cell. 2011 Apr;2(4):282-90. doi: 10.1007/s13238-011-1034-1. Epub 2011 Apr 28. Review.


Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease.

Zhang S, Zhong N, Xue F, Kang X, Ren X, Chen J, Jin C, Lou Z, Xia B.

Protein Cell. 2010 Apr;1(4):371-83. doi: 10.1007/s13238-010-0044-8. Epub 2010 May 8.


Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase.

Li C, Qi Y, Teng X, Yang Z, Wei P, Zhang C, Tan L, Zhou L, Liu Y, Lai L.

J Biol Chem. 2010 Sep 3;285(36):28134-40. doi: 10.1074/jbc.M109.095851. Epub 2010 May 20.


Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

Wu CG, Cheng SC, Chen SC, Li JY, Fang YH, Chen YH, Chou CY.

Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):747-55. doi: 10.1107/S0907444913001315. Epub 2013 Apr 11.


C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.

Zhong N, Zhang S, Xue F, Kang X, Zou P, Chen J, Liang C, Rao Z, Jin C, Lou Z, Xia B.

Protein Sci. 2009 Apr;18(4):839-44. doi: 10.1002/pro.76.


Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure.

Hu T, Zhang Y, Li L, Wang K, Chen S, Chen J, Ding J, Jiang H, Shen X.

Virology. 2009 Jun 5;388(2):324-34. doi: 10.1016/j.virol.2009.03.034. Epub 2009 May 5.


Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain.

Zhong N, Zhang S, Zou P, Chen J, Kang X, Li Z, Liang C, Jin C, Xia B.

J Virol. 2008 May;82(9):4227-34. doi: 10.1128/JVI.02612-07. Epub 2008 Feb 27.


Mechanism of the maturation process of SARS-CoV 3CL protease.

Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AH, Liang PH.

J Biol Chem. 2005 Sep 2;280(35):31257-66. Epub 2005 Mar 23.


1H, 13C and 15N resonance assignments of SARS-CoV main protease N-terminal domain.

Zhang S, Zhong N, Ren X, Jin C, Xia B.

Biomol NMR Assign. 2011 Oct;5(2):143-5. doi: 10.1007/s12104-010-9287-9. Epub 2010 Dec 23.


Residues on the dimer interface of SARS coronavirus 3C-like protease: dimer stability characterization and enzyme catalytic activity analysis.

Chen S, Zhang J, Hu T, Chen K, Jiang H, Shen X.

J Biochem. 2008 Apr;143(4):525-36. doi: 10.1093/jb/mvm246. Epub 2008 Jan 7.


Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease.

Zhu L, George S, Schmidt MF, Al-Gharabli SI, Rademann J, Hilgenfeld R.

Antiviral Res. 2011 Nov;92(2):204-12. doi: 10.1016/j.antiviral.2011.08.001. Epub 2011 Aug 11.


Mutation of Asn28 disrupts the dimerization and enzymatic activity of SARS 3CL(pro) .

Barrila J, Gabelli SB, Bacha U, Amzel LM, Freire E.

Biochemistry. 2010 May 25;49(20):4308-17. doi: 10.1021/bi1002585.


Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer.

Xu T, Ooi A, Lee HC, Wilmouth R, Liu DX, Lescar J.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Nov 1;61(Pt 11):964-6. Epub 2005 Oct 20.


Application of bioinformatics in search for cleavable peptides of SARS-CoV M(pro) and chemical modification of octapeptides.

Du Q, Wang S, Jiang Z, Gao W, Li Y, Wei D, Chou KC.

Med Chem. 2005 May;1(3):209-13.


Supplemental Content

Support Center