Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 249

1.

Multiphoton fabrication of freeform polymer microstructures with gold nanorods.

Kuo WS, Lien CH, Cho KC, Chang CY, Lin CY, Huang LL, Campagnola PJ, Dong CY, Chen SJ.

Opt Express. 2010 Dec 20;18(26):27550-9. doi: 10.1364/OE.18.027550.

PMID:
21197029
2.

Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry.

Lien CH, Kuo WS, Cho KC, Lin CY, Su YD, Huang LL, Campagnola PJ, Dong CY, Chen SJ.

Opt Express. 2011 Mar 28;19(7):6260-8. doi: 10.1364/OE.19.006260.

PMID:
21451651
3.

Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation.

Li YC, Cheng LC, Chang CY, Lien CH, Campagnola PJ, Chen SJ.

Opt Express. 2012 Aug 13;20(17):19030-8. doi: 10.1364/OE.20.019030.

PMID:
23038543
4.

Plasmon induced self-assembly of gold nanorods in polymer films.

Marquez DT, Scaiano JC.

Chem Commun (Camb). 2015 Feb 4;51(10):1911-3. doi: 10.1039/c4cc08261c.

PMID:
25531098
5.

Surface plasmon effects on two photon luminescence of gold nanorods.

Wang DS, Hsu FY, Lin CW.

Opt Express. 2009 Jul 6;17(14):11350-9.

PMID:
19582049
6.

Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics.

Ungureanu C, Kroes R, Petersen W, Groothuis TA, Ungureanu F, Janssen H, van Leeuwen FW, Kooyman RP, Manohar S, van Leeuwen TG.

Nano Lett. 2011 May 11;11(5):1887-94. doi: 10.1021/nl103884b. Epub 2011 Apr 14.

PMID:
21491868
7.

Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells.

Li JL, Gu M.

Biomaterials. 2010 Dec;31(36):9492-8. doi: 10.1016/j.biomaterials.2010.08.068. Epub 2010 Oct 6.

PMID:
20932571
8.

In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons.

Chen CL, Kuo LR, Chang CL, Hwu YK, Huang CK, Lee SY, Chen K, Lin SJ, Huang JD, Chen YY.

Biomaterials. 2010 May;31(14):4104-12. doi: 10.1016/j.biomaterials.2010.01.140. Epub 2010 Feb 23.

PMID:
20181393
9.

Ultrasound-induced morphology transformation from 3D microspheres to 1D nanorods of luminescent coordination polymer.

Liu K, Zheng Y, Yang M, Jia G, Guo N, Song Y, You H.

J Nanosci Nanotechnol. 2011 Mar;11(3):1935-40.

PMID:
21449331
10.

Light polarization-controlled shape-memory polymer/gold nanorod composite.

Zhang H, Zhang J, Tong X, Ma D, Zhao Y.

Macromol Rapid Commun. 2013 Oct;34(19):1575-9. doi: 10.1002/marc.201300629. Epub 2013 Sep 20.

PMID:
24092559
11.

Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing.

Wang P, Zhang L, Xia Y, Tong L, Xu X, Ying Y.

Nano Lett. 2012 Jun 13;12(6):3145-50. doi: 10.1021/nl301055f. Epub 2012 May 17.

PMID:
22582809
12.

Plasmonic gold nanorods can carry sulfonated aluminum phthalocyanine to improve photodynamic detection and therapy of cancers.

Li L, Chen JY, Wu X, Wang PN, Peng Q.

J Phys Chem B. 2010 Dec 30;114(51):17194-200. doi: 10.1021/jp109363n. Epub 2010 Dec 7.

PMID:
21138283
13.

Plasmonic enhancement of the two photon absorption cross section of an organic chromophore using polyelectrolyte-coated gold nanorods.

Sivapalan ST, Vella JH, Yang TK, Dalton MJ, Swiger RN, Haley JE, Cooper TM, Urbas AM, Tan LS, Murphy CJ.

Langmuir. 2012 Jun 19;28(24):9147-54. doi: 10.1021/la300762k. Epub 2012 Apr 18.

PMID:
22500968
14.

The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells.

Wu X, Chen JY, Brech A, Fang C, Wang J, Helm PJ, Peng Q.

Biomaterials. 2013 Aug;34(26):6157-62. doi: 10.1016/j.biomaterials.2013.04.048. Epub 2013 May 22.

PMID:
23706782
15.

Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization.

Engelhardt S, Hoch E, Borchers K, Meyer W, Krüger H, Tovar GE, Gillner A.

Biofabrication. 2011 Jun;3(2):025003. doi: 10.1088/1758-5082/3/2/025003. Epub 2011 May 12.

PMID:
21562366
16.

Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction.

Rudnitzki F, Bever M, Rahmanzadeh R, Brieger K, Endl E, Groll J, Hüttmann G.

J Biomed Opt. 2012 May;17(5):058003. doi: 10.1117/1.JBO.17.5.058003.

PMID:
22612150
17.

An overview of synthetic strategies and current applications of gold nanorods in cancer treatment.

Lakhani PM, Rompicharla SV, Ghosh B, Biswas S.

Nanotechnology. 2015 Oct 30;26(43):432001. doi: 10.1088/0957-4484/26/43/432001. Epub 2015 Oct 8. Review.

PMID:
26446935
18.

Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation.

Li X, Kao FJ, Chuang CC, He S.

Opt Express. 2010 May 24;18(11):11335-46. doi: 10.1364/OE.18.011335.

PMID:
20588995
19.

Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom.

Didychuk CL, Ephrat P, Chamson-Reig A, Jacques SL, Carson JJ.

Nanotechnology. 2009 May 13;20(19):195102. doi: 10.1088/0957-4484/20/19/195102. Epub 2009 Apr 20.

PMID:
19420630
20.

Accuracy of superlocalization imaging using Gaussian and dipole emission point-spread functions for modeling gold nanorod luminescence.

Titus EJ, Willets KA.

ACS Nano. 2013 Jul 23;7(7):6258-67. doi: 10.1021/nn4022845. Epub 2013 Jun 5.

PMID:
23725587

Supplemental Content

Support Center