Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

1.

Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow.

Lin C, Kolossov VL, Tsvid G, Trump L, Henry JJ, Henderson JL, Rund LA, Kenis PJ, Schook LB, Gaskins HR, Timp G.

Integr Biol (Camb). 2011 Mar;3(3):208-17. doi: 10.1039/c0ib00071j.

2.

Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise.

Kolossov VL, Hanafin WP, Beaudoin JN, Bica DE, DiLiberto SJ, Kenis PJ, Gaskins HR.

Exp Biol Med (Maywood). 2014 Apr;239(4):394-403. doi: 10.1177/1535370214522179.

3.

Induction of mild intracellular redox imbalance inhibits proliferation of CaCo-2 cells.

Noda T, Iwakiri R, Fujimoto K, Aw TY.

FASEB J. 2001 Oct;15(12):2131-9.

PMID:
11641239
4.
5.

Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment.

Kolossov VL, Leslie MT, Chatterjee A, Sheehan BM, Kenis PJ, Gaskins HR.

Exp Biol Med (Maywood). 2012 Jun;237(6):652-62. doi: 10.1258/ebm.2012.011436.

6.

NO-induced oxidative stress and glutathione metabolism in rodent and human cells.

Luperchio S, Tamir S, Tannenbaum SR.

Free Radic Biol Med. 1996;21(4):513-9.

PMID:
8886802
7.

Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

Harris C, Shuster DZ, Roman Gomez R, Sant KE, Reed MS, Pohl J, Hansen JM.

Free Radic Biol Med. 2013 Oct;63:325-37. doi: 10.1016/j.freeradbiomed.2013.05.040.

8.

Radiation response of cells during altered protein thiol redox.

Biaglow JE, Ayene IS, Koch CJ, Donahue J, Stamato TD, Mieyal JJ, Tuttle SW.

Radiat Res. 2003 Apr;159(4):484-94.

PMID:
12643793
9.

Measuring dynamic changes in cAMP using fluorescence resonance energy transfer.

Evellin S, Mongillo M, Terrin A, Lissandron V, Zaccolo M.

Methods Mol Biol. 2004;284:259-70.

PMID:
15173622
10.

Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.

Banach-Latapy A, He T, Dardalhon M, Vernis L, Chanet R, Huang ME.

Free Radic Biol Med. 2013 Dec;65:436-45. doi: 10.1016/j.freeradbiomed.2013.07.033.

PMID:
23891676
11.

Contrasting effects of thiol-modulating agents on endothelial NO bioactivity.

Huang A, Xiao H, Samii JM, Vita JA, Keaney JF Jr.

Am J Physiol Cell Physiol. 2001 Aug;281(2):C719-25.

12.

Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide.

Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A.

FASEB J. 1998 May;12(7):561-9.

PMID:
9576483
13.
14.

Glutathione oxidation and embryotoxicity elicited by diamide in the developing rat conceptus in vitro.

Hiranruengchok R, Harris C.

Toxicol Appl Pharmacol. 1993 May;120(1):62-71.

15.

Intracellular reduction of selenite into glutathione peroxidase. Evidence for involvement of NADPH and not glutathione as the reductant.

Bhamre S, Nuzzo RL, Whitin JC, Olshen RA, Cohen HJ.

Mol Cell Biochem. 2000 Aug;211(1-2):9-17.

PMID:
11055542
16.

Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems.

Go YM, Roede JR, Walker DI, Duong DM, Seyfried NT, Orr M, Liang Y, Pennell KD, Jones DP.

Mol Cell Proteomics. 2013 Nov;12(11):3285-96. doi: 10.1074/mcp.M113.030437.

17.

Biphasic lindane-induced oxidation of glutathione and inhibition of gap junctions in myometrial cells.

Caruso RL, Upham BL, Harris C, Trosko JE.

Toxicol Sci. 2005 Aug;86(2):417-26.

PMID:
15901910
18.

Engineering redox-sensitive linkers for genetically encoded FRET-based biosensors.

Kolossov VL, Spring BQ, Sokolowski A, Conour JE, Clegg RM, Kenis PJ, Gaskins HR.

Exp Biol Med (Maywood). 2008 Feb;233(2):238-48. doi: 10.3181/0707-RM-192.

PMID:
18222979
19.

Redox control of K+ channel remodeling in rat ventricle.

Li X, Li S, Xu Z, Lou MF, Anding P, Liu D, Roy SK, Rozanski GJ.

J Mol Cell Cardiol. 2006 Mar;40(3):339-49.

PMID:
16288907
Items per page

Supplemental Content

Support Center