Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 193

1.

Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna.

Petersen EJ, Pinto RA, Mai DJ, Landrum PF, Weber WJ Jr.

Environ Sci Technol. 2011 Feb 1;45(3):1133-8. doi: 10.1021/es1030239. Epub 2010 Dec 23.

PMID:
21182278
2.

Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils.

Petersen EJ, Pinto RA, Zhang L, Huang Q, Landrum PF, Weber WJ.

Environ Sci Technol. 2011 Apr 15;45(8):3718-24. doi: 10.1021/es103004r. Epub 2011 Mar 24.

PMID:
21434629
3.

In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna.

Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke PC, Rao AM, Klaine SJ.

Environ Sci Technol. 2007 Apr 15;41(8):3025-9.

PMID:
17533874
4.

Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.

Liu J, Wang WX.

Environ Toxicol Chem. 2015 Dec;34(12):2824-32. doi: 10.1002/etc.3122. Epub 2015 Oct 15.

PMID:
26094590
5.

Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna.

Yu ZG, Wang WX.

Water Res. 2013 Aug 1;47(12):4179-87. doi: 10.1016/j.watres.2013.01.059. Epub 2013 Mar 28.

PMID:
23582308
6.

Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction.

Alloy MM, Roberts AP.

Ecotoxicol Environ Saf. 2011 Oct;74(7):1839-43. doi: 10.1016/j.ecoenv.2011.06.020. Epub 2011 Jul 18.

PMID:
21764452
7.

The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to Daphnia magna.

Qin L, Huang Q, Wei Z, Wang L, Wang Z.

Environ Toxicol Pharmacol. 2014 Jul;38(1):199-204. doi: 10.1016/j.etap.2014.05.016. Epub 2014 Jun 8.

PMID:
24956399
8.

The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes.

Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Mao J, Klaine SJ.

Environ Toxicol Chem. 2010 Nov;29(11):2511-8. doi: 10.1002/etc.309.

PMID:
20865699
9.

Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery.

Nunes A, Amsharov N, Guo C, Van den Bossche J, Santhosh P, Karachalios TK, Nitodas SF, Burghard M, Kostarelos K, Al-Jamal KT.

Small. 2010 Oct 18;6(20):2281-91. doi: 10.1002/smll.201000864.

PMID:
20878655
10.

Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.

Wang X, Qu R, Liu J, Wei Z, Wang L, Yang S, Huang Q, Wang Z.

Environ Pollut. 2016 Jan;208(Pt B):732-8. doi: 10.1016/j.envpol.2015.10.053.

PMID:
26561447
11.

Biological uptake and depuration of carbon nanotubes by Daphnia magna.

Petersen EJ, Akkanen J, Kukkonen JV, Weber WJ Jr.

Environ Sci Technol. 2009 Apr 15;43(8):2969-75.

PMID:
19475979
12.

Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction.

Cao X, Chen J, Wen S, Peng C, Shen M, Shi X.

Nanoscale. 2011 Apr;3(4):1741-7. doi: 10.1039/c0nr00833h. Epub 2011 Feb 21.

PMID:
21340081
13.

Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery.

Behnam B, Shier WT, Nia AH, Abnous K, Ramezani M.

Int J Pharm. 2013 Sep 15;454(1):204-15. doi: 10.1016/j.ijpharm.2013.06.057. Epub 2013 Jul 12.

PMID:
23856161
14.

Phenanthrene Bioavailability and Toxicity to Daphnia magna in the Presence of Carbon Nanotubes with Different Physicochemical Properties.

Zindler F, Glomstad B, Altin D, Liu J, Jenssen BM, Booth AM.

Environ Sci Technol. 2016 Nov 15;50(22):12446-12454. Epub 2016 Oct 25.

PMID:
27700057
15.

Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes.

Shi B, Zhuang X, Yan X, Lu J, Tang H.

J Environ Sci (China). 2010;22(8):1195-202.

PMID:
21179958
16.

Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.

Alpatova AL, Shan W, Babica P, Upham BL, Rogensues AR, Masten SJ, Drown E, Mohanty AK, Alocilja EC, Tarabara VV.

Water Res. 2010 Jan;44(2):505-20. doi: 10.1016/j.watres.2009.09.042. Epub 2009 Sep 30.

PMID:
19945136
17.

Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms.

Petersen EJ, Pinto RA, Landrum PF, Weber WJ Jr.

Environ Sci Technol. 2009 Jun 1;43(11):4181-7.

PMID:
19569349
18.

Lipid coating increases uptake of nanotubes.

Chatterjee R.

Environ Sci Technol. 2007 Apr 15;41(8):2657-8. No abstract available.

PMID:
17533819
19.

Different stabilities of multiwalled carbon nanotubes in fresh surface water samples.

Lin D, Liu N, Yang K, Xing B, Wu F.

Environ Pollut. 2010 May;158(5):1270-4. doi: 10.1016/j.envpol.2010.01.020. Epub 2010 Feb 20.

PMID:
20171769
20.

Natural organic matter stabilizes carbon nanotubes in the aqueous phase.

Hyung H, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2007 Jan 1;41(1):179-84.

PMID:
17265945

Supplemental Content

Support Center