Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Tight binding of proteins to membranes from older human cells.

Truscott RJ, Comte-Walters S, Ablonczy Z, Schwacke JH, Berry Y, Korlimbinis A, Friedrich MG, Schey KL.

Age (Dordr). 2011 Dec;33(4):543-54. doi: 10.1007/s11357-010-9198-9. Epub 2010 Dec 23.

2.

Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.

Harrington V, Srivastava OP, Kirk M.

Mol Vis. 2007 Sep 14;13:1680-94.

PMID:
17893670
3.

α- and β-crystallins modulate the head group order of human lens membranes during aging.

Zhu X, Gaus K, Lu Y, Magenau A, Truscott RJ, Mitchell TW.

Invest Ophthalmol Vis Sci. 2010 Oct;51(10):5162-7. doi: 10.1167/iovs.09-4947. Epub 2010 May 19.

4.

Interaction of alpha-crystallin with lens plasma membranes. Affinity for MP26.

Mulders JW, Stokkermans J, Leunissen JA, Benedetti EL, Bloemendal H, de Jong WW.

Eur J Biochem. 1985 Nov 4;152(3):721-8.

5.

Membrane association of proteins in the aging human lens: profound changes take place in the fifth decade of life.

Friedrich MG, Truscott RJ.

Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4786-93. doi: 10.1167/iovs.09-3588. Epub 2009 May 20.

PMID:
19458333
6.

High capacity binding of alpha crystallins to various bovine lens membrane preparations.

Cenedella RJ, Chandrasekher G.

Curr Eye Res. 1993 Nov;12(11):1025-38.

PMID:
8306713
7.

Large-scale binding of α-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress.

Friedrich MG, Truscott RJ.

Invest Ophthalmol Vis Sci. 2010 Oct;51(10):5145-52. doi: 10.1167/iovs.10-5261. Epub 2010 Apr 30.

8.

Lens growth and protein changes in the eastern grey kangaroo.

Augusteyn RC.

Mol Vis. 2011;17:3234-42. Epub 2011 Dec 14.

9.

Chaperone activity in the lens.

Augusteyn RC, Murnane L, Nicola A, Stevens A.

Clin Exp Optom. 2002 Mar;85(2):83-90.

11.

Interaction of lens alpha and gamma crystallins during aging of the bovine lens.

Peterson J, Radke G, Takemoto L.

Exp Eye Res. 2005 Dec;81(6):680-9. Epub 2005 Jun 20.

PMID:
15967431
12.

Hydration properties of the molecular chaperone alpha-crystallin in the bovine lens.

Babizhayev MA, Nikolayev GM, Goryachev SN, Bours J, Martin R.

Biochemistry (Mosc). 2003 Oct;68(10):1145-55.

PMID:
14616086
13.

Resistance of human betaB2-crystallin to in vivo modification.

Zhang Z, David LL, Smith DL, Smith JB.

Exp Eye Res. 2001 Aug;73(2):203-11.

PMID:
11446770
14.

Simultaneous stereoinversion and isomerization at the Asp-4 residue in βB2-crystallin from the aged human eye lenses.

Fujii N, Kawaguchi T, Sasaki H, Fujii N.

Biochemistry. 2011 Oct 11;50(40):8628-35. doi: 10.1021/bi200983g. Epub 2011 Sep 14.

PMID:
21877723
15.

Degradation of an old human protein: age-dependent cleavage of γS-crystallin generates a peptide that binds to cell membranes.

Friedrich MG, Lam J, Truscott RJ.

J Biol Chem. 2012 Nov 9;287(46):39012-20. doi: 10.1074/jbc.M112.391565. Epub 2012 Sep 20.

16.

On the interaction of alpha-crystallin with membranes.

Zhang WZ, Augusteyn RC.

Curr Eye Res. 1994 Mar;13(3):225-30.

PMID:
8194371
17.

Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.

Santhoshkumar P, Udupa P, Murugesan R, Sharma KK.

J Biol Chem. 2008 Mar 28;283(13):8477-85. doi: 10.1074/jbc.M705876200. Epub 2008 Jan 28. Erratum in: J Biol Chem. 2008 Dec 19;283(51):36060.

18.

Selective association of crystallins with lens 'native' membrane during dynamic cataractogenesis.

Cenedella RJ, Fleschner CR.

Curr Eye Res. 1992 Aug;11(8):801-15.

PMID:
1424724
19.

Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.

Ueda Y, Duncan MK, David LL.

Invest Ophthalmol Vis Sci. 2002 Jan;43(1):205-15.

PMID:
11773033
20.

Protein associated with human lens 'native' membrane during aging and cataract formation.

Chandrasekher G, Cenedella RJ.

Exp Eye Res. 1995 Jun;60(6):707-17.

PMID:
7641853

Supplemental Content

Support Center