Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Deep-level Transient Spectroscopy of GaAs/AlGaAs Multi-Quantum Wells Grown on (100) and (311)B GaAs Substrates.

Shafi M, Mari RH, Khatab A, Taylor D, Henini M.

Nanoscale Res Lett. 2010 Nov 16;5(12):1948-51. doi: 10.1007/s11671-010-9820-x.

2.

Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE.

Mari RH, Shafi M, Aziz M, Khatab A, Taylor D, Henini M.

Nanoscale Res Lett. 2011 Feb 28;6(1):180. doi: 10.1186/1556-276X-6-180.

3.

Photoluminescence study of type-II InGaPN/GaAs quantum wells.

Kaewket D, Sanorpim S, Tungasmita S, Katayama R, Onabe K.

J Nanosci Nanotechnol. 2010 Nov;10(11):7154-7.

PMID:
21137886
4.

Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique.

Al Saqri NA, Felix JF, Aziz M, Kunets VP, Jameel D, Taylor D, Henini M, Abd El-Sadek MS, Furrow C, Ware ME, Benamara M, Mortazavi M, Salamo G.

Nanotechnology. 2017 Jan 27;28(4):045707. doi: 10.1088/1361-6528/28/4/045707. Epub 2016 Dec 20.

PMID:
27997370
5.

Valence band offset at the Si/SiSn interface by applying deep level transient spectroscopy.

Rangel-Kuoppa VT, Tonkikh A, Zakharov N, Eisenschmidt C, Werner P.

Nanotechnology. 2016 Feb 19;27(7):075705. doi: 10.1088/0957-4484/27/7/075705. Epub 2016 Jan 18.

PMID:
26775681
6.

InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy.

He J, Yadavalli K, Zhao Z, Li N, Hao Z, Wang KL, Jacob AP.

Nanotechnology. 2008 Nov 12;19(45):455607. doi: 10.1088/0957-4484/19/45/455607. Epub 2008 Oct 9.

PMID:
21832784
7.

Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique.

Song H, Kim JS, Kim EK, Seo YG, Hwang SM.

Nanotechnology. 2010 Apr 2;21(13):134026. doi: 10.1088/0957-4484/21/13/134026. Epub 2010 Mar 8.

PMID:
20208099
8.

Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs1-xBix/GaAs heterostructures.

Mazur YI, Dorogan VG, de Souza LD, Fan D, Benamara M, Schmidbauer M, Ware ME, Tarasov GG, Yu SQ, Marques GE, Salamo GJ.

Nanotechnology. 2014 Jan 24;25(3):035702. doi: 10.1088/0957-4484/25/3/035702. Epub 2013 Dec 17.

PMID:
24346504
9.

Dynamics of Optically-Generated Carriers in Si (100) and Si (111) Substrate-Grown GaAs/AlGaAs Core-Shell Nanowires.

Delos Santos R, Ibañes JJ, Balgos MH, Jaculbia R, Afalla JP, Bailon-Somintac M, Estacio E, Salvador A, Somintac A, Que C, Tsuzuki S, Yamamoto K, Tani M.

Nanoscale Res Lett. 2015 Dec;10(1):1050. doi: 10.1186/s11671-015-1050-9. Epub 2015 Aug 21.

10.

Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.

Zhou HL, Hoang TB, Dheeraj DL, van Helvoort AT, Liu L, Harmand JC, Fimland BO, Weman H.

Nanotechnology. 2009 Oct 14;20(41):415701. doi: 10.1088/0957-4484/20/41/415701. Epub 2009 Sep 16.

PMID:
19755725
11.

Light-emitting devices based on top-down fabricated GaAs quantum nanodisks.

Higo A, Kiba T, Tamura Y, Thomas C, Takayama J, Wang Y, Sodabanlu H, Sugiyama M, Nakano Y, Yamashita I, Murayama A, Samukawa S.

Sci Rep. 2015 Mar 20;5:9371. doi: 10.1038/srep09371.

12.
13.

Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing.

Makhloufi H, Boonpeng P, Mazzucato S, Nicolai J, Arnoult A, Hungria T, Lacoste G, Gatel C, Ponchet A, Carrère H, Marie X, Fontaine C.

Nanoscale Res Lett. 2014 Mar 17;9(1):123. doi: 10.1186/1556-276X-9-123.

14.

Long-range spatial correlations in the exciton energy distribution in GaAs/AlGaAs quantum wells.

Yayon Y, Esser A, Rappaport M, Umansky V, Shtrikman H, Bar-Joseph I.

Phys Rev Lett. 2002 Oct 7;89(15):157402. Epub 2002 Sep 23.

PMID:
12366020
15.

Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.

Songmuang R, Giang le TT, Bleuse J, Den Hertog M, Niquet YM, Dang le S, Mariette H.

Nano Lett. 2016 Jun 8;16(6):3426-33. doi: 10.1021/acs.nanolett.5b03917. Epub 2016 May 13.

PMID:
27081785
16.

Comparative study on InAs/InGaAs dots-in-a-well structure grown on GaAs(311) B and (100) substrates.

Wang L, Li M, Xiong M, Wang W, Gao H, Zhao L.

J Nanosci Nanotechnol. 2010 Nov;10(11):7359-61.

PMID:
21137934
17.

Effects of temperature on transition energies of GaAsSbN/GaAs single quantum wells.

Lourenço SA, da Silva MA, Dias IF, Duarte JL, Harmand JC.

J Phys Condens Matter. 2011 Aug 17;23(32):325801. doi: 10.1088/0953-8984/23/32/325801. Epub 2011 Jul 25.

PMID:
21785181
18.

Activation of an intense near band edge emission from ZnTe/ZnMgTe core/shell nanowires grown on silicon.

Wojnar P, Szymura M, Zaleszczyk W, Kłopotowski L, Janik E, Wiater M, Baczewski LT, Kret S, Karczewski G, Kossut J, Wojtowicz T.

Nanotechnology. 2013 Sep 13;24(36):365201. doi: 10.1088/0957-4484/24/36/365201. Epub 2013 Aug 20.

PMID:
23960005
19.

Molecular beam epitaxy growth of peak wavelength-controlled InGaAs/AlGaAs quantum wells for 4.3-μm mid-wavelength infrared detection.

Shi Z, Wang L, Zhen H, Wang W, Chen H.

Nanoscale Res Lett. 2013 Jul 3;8(1):310. doi: 10.1186/1556-276X-8-310.

20.

Optically controlled reflection modulator using GaAs-AlGaAs n-i-p-i/multiple-quantum-well structures.

Law KK, Maserjian J, Simes RJ, Coldren LA, Gossard AC, Merz JL.

Opt Lett. 1989 Feb 15;14(4):230-2.

PMID:
19749879

Supplemental Content

Support Center