Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

CD47 knockout mice exhibit improved recovery from spinal cord injury.

Myers SA, DeVries WH, Andres KR, Gruenthal MJ, Benton RL, Hoying JB, Hagg T, Whittemore SR.

Neurobiol Dis. 2011 Apr;42(1):21-34. doi: 10.1016/j.nbd.2010.12.010. Epub 2010 Dec 17.

2.

Sildenafil improves epicenter vascular perfusion but not hindlimb functional recovery after contusive spinal cord injury in mice.

Myers SA, DeVries WH, Gruenthal MJ, Andres KR, Hagg T, Whittemore SR.

J Neurotrauma. 2012 Feb 10;29(3):528-38. doi: 10.1089/neu.2011.2036. Epub 2011 Dec 15.

3.

CD36 deletion improves recovery from spinal cord injury.

Myers SA, Andres KR, Hagg T, Whittemore SR.

Exp Neurol. 2014 Jun;256:25-38. doi: 10.1016/j.expneurol.2014.03.016. Epub 2014 Mar 30.

4.

Genetic ablation of transcription repressor Bach1 reduces neural tissue damage and improves locomotor function after spinal cord injury in mice.

Kanno H, Ozawa H, Dohi Y, Sekiguchi A, Igarashi K, Itoi E.

J Neurotrauma. 2009 Jan;26(1):31-9. doi: 10.1089/neu.2008.0667.

PMID:
19119918
5.
6.

Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury.

Kubota K, Saiwai H, Kumamaru H, Maeda T, Ohkawa Y, Aratani Y, Nagano T, Iwamoto Y, Okada S.

Spine (Phila Pa 1976). 2012 Jul 15;37(16):1363-9. doi: 10.1097/BRS.0b013e31824b9e77.

PMID:
22322369
7.

Targeting endothelin receptors A and B attenuates the inflammatory response and improves locomotor function following spinal cord injury in mice.

Guo J, Li Y, He Z, Zhang B, Li Y, Hu J, Han M, Xu Y, Li Y, Gu J, Dai B, Chen Z.

Int J Mol Med. 2014 Jul;34(1):74-82. doi: 10.3892/ijmm.2014.1751. Epub 2014 Apr 22.

8.

Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury.

Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP, Anderson AJ.

J Neurosci. 2008 Dec 17;28(51):13876-88. doi: 10.1523/JNEUROSCI.2823-08.2008.

9.

Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training.

Shin HY, Kim H, Kwon MJ, Hwang DH, Lee K, Kim BG.

PLoS One. 2014 Feb 10;9(2):e88215. doi: 10.1371/journal.pone.0088215. eCollection 2014.

10.

Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.

Terayama R, Bando Y, Murakami K, Kato K, Kishibe M, Yoshida S.

Neuroscience. 2007 Aug 10;148(1):175-87. Epub 2007 Jul 12.

PMID:
17629414
11.

CD47 gene knockout protects against transient focal cerebral ischemia in mice.

Jin G, Tsuji K, Xing C, Yang YG, Wang X, Lo EH.

Exp Neurol. 2009 May;217(1):165-70. doi: 10.1016/j.expneurol.2009.02.004. Epub 2009 Feb 20.

12.

FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury.

Casha S, Yu WR, Fehlings MG.

Exp Neurol. 2005 Dec;196(2):390-400. Epub 2005 Oct 3.

PMID:
16202410
13.

Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury.

Yu CG, Singh R, Crowdus C, Raza K, Kincer J, Geddes JW.

Neuroscience. 2014 Jan 3;256:163-9. doi: 10.1016/j.neuroscience.2013.10.039. Epub 2013 Oct 30.

14.
15.

Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway.

Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J.

J Neurotrauma. 2009 Jan;26(1):41-53. doi: 10.1089/neu.2008.0646.

PMID:
19196180
16.

Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events.

Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z.

J Neurosci. 2002 Sep 1;22(17):7526-35.

17.

Expression and detrimental role of hematopoietic prostaglandin D synthase in spinal cord contusion injury.

Redensek A, Rathore KI, Berard JL, López-Vales R, Swayne LA, Bennett SA, Mohri I, Taniike M, Urade Y, David S.

Glia. 2011 Apr;59(4):603-14. doi: 10.1002/glia.21128. Epub 2011 Feb 3.

PMID:
21294159
18.

Lack of CD47 impairs bone cell differentiation and results in an osteopenic phenotype in vivo due to impaired signal regulatory protein α (SIRPα) signaling.

Koskinen C, Persson E, Baldock P, Stenberg Å, Boström I, Matozaki T, Oldenborg PA, Lundberg P.

J Biol Chem. 2013 Oct 11;288(41):29333-44. doi: 10.1074/jbc.M113.494591. Epub 2013 Aug 29.

19.

Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury.

Mostacada K, Oliveira FL, Villa-Verde DM, Martinez AM.

Exp Neurol. 2015 Sep;271:390-400. doi: 10.1016/j.expneurol.2015.07.006. Epub 2015 Jul 14.

PMID:
26183316
20.

Signal-regulatory protein alpha-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium.

de Vries HE, Hendriks JJ, Honing H, De Lavalette CR, van der Pol SM, Hooijberg E, Dijkstra CD, van den Berg TK.

J Immunol. 2002 Jun 1;168(11):5832-9.

Supplemental Content

Support Center