Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 422

1.

SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.

Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM.

Plant Physiol. 2011 Feb;155(2):1000-12. doi: 10.1104/pp.110.165191. Epub 2010 Dec 14.

2.

The function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 Ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana.

Wang X, Du G, Wang X, Meng Y, Li Y, Wu P, Yi K.

Plant Cell Physiol. 2010 Mar;51(3):380-94. doi: 10.1093/pcp/pcq004. Epub 2010 Jan 12.

PMID:
20071375
3.

The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses.

Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM.

Proc Natl Acad Sci U S A. 2005 May 24;102(21):7760-5. Epub 2005 May 13. Erratum in: Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9734.

4.

Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

Xu L, Jin L, Long L, Liu L, He X, Gao W, Zhu L, Zhang X.

Plant Cell Rep. 2012 Dec;31(12):2177-88. doi: 10.1007/s00299-012-1328-7. Epub 2012 Aug 14.

PMID:
22890372
5.

A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis.

Sankaranarayanan S, Samuel MA.

Plant Signal Behav. 2015;10(3):e989749. doi: 10.4161/15592324.2014.989749.

6.

Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride.

Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J.

Mol Plant Microbe Interact. 2015 Jun;28(6):701-10. doi: 10.1094/MPMI-01-15-0005-R. Epub 2015 Jun 12.

7.

A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis.

Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P.

Plant Physiol. 2005 Aug;138(4):2061-74. Epub 2005 Jul 22.

8.

GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for arabidopsis lateral root initiation.

Okumura K, Goh T, Toyokura K, Kasahara H, Takebayashi Y, Mimura T, Kamiya Y, Fukaki H.

Plant Cell Physiol. 2013 Mar;54(3):406-17. doi: 10.1093/pcp/pct018. Epub 2013 Feb 6.

9.

Type-A response regulators are required for proper root apical meristem function through post-transcriptional regulation of PIN auxin efflux carriers.

Zhang W, To JP, Cheng CY, Schaller GE, Kieber JJ.

Plant J. 2011 Oct;68(1):1-10. doi: 10.1111/j.1365-313X.2011.04668.x. Epub 2011 Jul 21.

10.

Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings.

Martín-Rejano EM, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Rexach J, Navarro-Gochicoa MT, González-Fontes A.

Physiol Plant. 2011 Jun;142(2):170-8. doi: 10.1111/j.1399-3054.2011.01459.x. Epub 2011 Mar 16.

PMID:
21338369
11.

The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation.

Moni A, Lee AY, Briggs WR, Han IS.

Plant Biol (Stuttg). 2015 Jan;17(1):34-40. doi: 10.1111/plb.12187. Epub 2014 May 6.

PMID:
24803136
12.

The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.

Raya-González J, Pelagio-Flores R, López-Bucio J.

J Plant Physiol. 2012 Sep 15;169(14):1348-58. doi: 10.1016/j.jplph.2012.05.002. Epub 2012 Jun 1.

PMID:
22658222
13.

AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis.

Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS.

Planta. 2015 Mar;241(3):591-602. doi: 10.1007/s00425-014-2204-1. Epub 2014 Nov 16.

PMID:
25399352
14.

Arabidopsis thaliana GH3.9 influences primary root growth.

Khan S, Stone JM.

Planta. 2007 Jun;226(1):21-34. Epub 2007 Jan 11.

PMID:
17216483
15.

RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana.

Ikeyama Y, Tasaka M, Fukaki H.

Plant J. 2010 Jun 1;62(5):865-75. doi: 10.1111/j.1365-313X.2010.04199.x. Epub 2010 Mar 4.

16.

HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling.

Yu H, Luo N, Sun L, Liu D.

J Exp Bot. 2012 Jul;63(12):4527-38. doi: 10.1093/jxb/ers131. Epub 2012 May 21.

17.

A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis.

Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK.

Plant Cell. 2013 Sep;25(9):3329-46. doi: 10.1105/tpc.113.114868. Epub 2013 Sep 17.

18.

Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.

Sukumar P, Maloney GS, Muday GK.

Plant Physiol. 2013 Jul;162(3):1392-405. doi: 10.1104/pp.113.217174. Epub 2013 May 15.

19.

Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana.

Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J.

Plant Cell Physiol. 2011 Mar;52(3):490-508. doi: 10.1093/pcp/pcr006. Epub 2011 Jan 19.

PMID:
21252298
20.

Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 is required for polar auxin transport.

Ge L, Peer W, Robert S, Swarup R, Ye S, Prigge M, Cohen JD, Friml J, Murphy A, Tang D, Estelle M.

Plant Cell. 2010 Jun;22(6):1749-61. doi: 10.1105/tpc.110.074195. Epub 2010 Jun 18.

Supplemental Content

Support Center