Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Compound analysis via graph kernels incorporating chirality.

Brown JB, Urata T, Tamura T, Arai MA, Kawabata T, Akutsu T.

J Bioinform Comput Biol. 2010 Dec;8 Suppl 1:63-81.

PMID:
21155020
2.

Graph wavelet alignment kernels for drug virtual screening.

Smalter A, Huan J, Lushington G.

J Bioinform Comput Biol. 2009 Jun;7(3):473-97.

3.

Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

Mohr JA, Jain BJ, Obermayer K.

J Chem Inf Model. 2008 Sep;48(9):1868-81. doi: 10.1021/ci800144y. Epub 2008 Sep 4.

PMID:
18767832
4.

Predicting multiple binding modes using a kernel method based on a vector space model molecular descriptor.

Burkowski FJ, Wong WW.

Int J Comput Biol Drug Des. 2009;2(1):58-80.

PMID:
20054986
6.

Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods.

Lv W, Xue Y.

Eur J Med Chem. 2010 Mar;45(3):1167-72. doi: 10.1016/j.ejmech.2009.12.038. Epub 2009 Dec 28.

PMID:
20053484
7.

QSAR modeling using chirality descriptors derived from molecular topology.

Golbraikh A, Tropsha A.

J Chem Inf Comput Sci. 2003 Jan-Feb;43(1):144-54.

PMID:
12546547
8.

In silico machine learning methods in drug development.

Dobchev DA, Pillai GG, Karelson M.

Curr Top Med Chem. 2014;14(16):1913-22.

PMID:
25262800
9.

Correlation kernels for support vector machines classification with applications in cancer data.

Jiang H, Ching WK.

Comput Math Methods Med. 2012;2012:205025. doi: 10.1155/2012/205025. Epub 2012 Aug 7.

10.

NL MIND-BEST: a web server for ligands and proteins discovery--theoretic-experimental study of proteins of Giardia lamblia and new compounds active against Plasmodium falciparum.

González-Díaz H, Prado-Prado F, Sobarzo-Sánchez E, Haddad M, Maurel Chevalley S, Valentin A, Quetin-Leclercq J, Dea-Ayuela MA, Teresa Gomez-Muños M, Munteanu CR, José Torres-Labandeira J, García-Mera X, Tapia RA, Ubeira FM.

J Theor Biol. 2011 May 7;276(1):229-49. doi: 10.1016/j.jtbi.2011.01.010. Epub 2011 Jan 26.

PMID:
21277861
11.

Virtual screening with support vector machines and structure kernels.

Mahé P, Vert JP.

Comb Chem High Throughput Screen. 2009 May;12(4):409-23. Review.

12.

Importance of molecular computer modeling in anticancer drug development.

Geromichalos GD.

J BUON. 2007 Sep;12 Suppl 1:S101-18. Review.

PMID:
17935268
13.

Predicting activity approach based on new atoms similarity kernel function.

Abu El-Atta AH, Moussa MI, Hassanien AE.

J Mol Graph Model. 2015 Jul;60:55-62. doi: 10.1016/j.jmgm.2015.05.014. Epub 2015 Jun 10.

PMID:
26117822
14.

Structure-based design of a superagonist ligand for the vitamin D nuclear receptor.

Hourai S, Rodrigues LC, Antony P, Reina-San-Martin B, Ciesielski F, Magnier BC, Schoonjans K, Mouriño A, Rochel N, Moras D.

Chem Biol. 2008 Apr;15(4):383-92. doi: 10.1016/j.chembiol.2008.03.016.

15.

Importance of Kier-Hall topological indices in the QSAR of anticancer drug design.

Nandi S, Bagchi MC.

Curr Comput Aided Drug Des. 2012 Jun;8(2):159-70. Review.

PMID:
22497470
16.

Drug design by machine learning: support vector machines for pharmaceutical data analysis.

Burbidge R, Trotter M, Buxton B, Holden S.

Comput Chem. 2001 Dec;26(1):5-14. Review.

PMID:
11765851
17.

Adaptive diffusion kernel learning from biological networks for protein function prediction.

Sun L, Ji S, Ye J.

BMC Bioinformatics. 2008 Mar 25;9:162. doi: 10.1186/1471-2105-9-162.

18.

Predicting complexation thermodynamic parameters of β-cyclodextrin with chiral guests by using swarm intelligence and support vector machines.

Prakasvudhisarn C, Wolschann P, Lawtrakul L.

Int J Mol Sci. 2009 May 14;10(5):2107-21. doi: 10.3390/ijms10052107.

19.

Potency-directed similarity searching using support vector machines.

Wassermann AM, Heikamp K, Bajorath J.

Chem Biol Drug Des. 2011 Jan;77(1):30-8. doi: 10.1111/j.1747-0285.2010.01059.x. Epub 2010 Nov 29.

PMID:
21114788
20.

QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.

Katritzky AR, Kuanar M, Dobchev DA, Vanhoecke BW, Karelson M, Parmar VS, Stevens CV, Bracke ME.

Bioorg Med Chem. 2006 Oct 15;14(20):6933-9.

PMID:
16908166

Supplemental Content

Support Center