Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells.

Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M.

Nat Biotechnol. 2011 Jan;29(1):73-8. doi: 10.1038/nbt.1717. Epub 2010 Dec 12.

2.

Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted β-thalassemia patient.

Tubsuwan A, Abed S, Deichmann A, Kardel MD, Bartholomä C, Cheung A, Negre O, Kadri Z, Fucharoen S, von Kalle C, Payen E, Chrétien S, Schmidt M, Eaves CJ, Leboulch P, Maouche-Chrétien L.

Stem Cells. 2013 Sep;31(9):1785-94. doi: 10.1002/stem.1436.

3.

Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene.

Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, Hongeng S, Hacein-Bey S, Cavazzana M, Leboulch P, Payen E.

Hum Gene Ther. 2016 Feb;27(2):148-65. doi: 10.1089/hum.2016.007.

4.

Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia/HbE patients.

Preedagasamzin S, Nualkaew T, Pongrujikorn T, Jinawath N, Kole R, Fucharoen S, Jearawiriyapaisarn N, Svasti S.

Biochem Biophys Res Commun. 2018 Apr 30;499(1):86-92. doi: 10.1016/j.bbrc.2018.03.102. Epub 2018 Mar 21.

PMID:
29550480
5.

Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells.

Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, Huang K, Chen S, Zhou X, Chen Y, Pei D, Pan G.

J Biol Chem. 2013 Nov 29;288(48):34671-9. doi: 10.1074/jbc.M113.496174. Epub 2013 Oct 23.

6.

Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.

Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chrétien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P.

Nature. 2010 Sep 16;467(7313):318-22. doi: 10.1038/nature09328.

7.

The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.

Ou Z, Niu X, He W, Chen Y, Song B, Xian Y, Fan D, Tang D, Sun X.

Sci Rep. 2016 Sep 1;6:32463. doi: 10.1038/srep32463.

8.

Gene Therapy for beta-thalassemia.

Malik P, Arumugam PI.

Hematology Am Soc Hematol Educ Program. 2005:45-50.

PMID:
16304358
9.

Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X.

Stem Cells Dev. 2015 May 1;24(9):1053-65. doi: 10.1089/scd.2014.0347. Epub 2015 Feb 5.

PMID:
25517294
10.

Derivation of genetically modified human pluripotent stem cells with integrated transgenes at unique mapped genomic sites.

Papapetrou EP, Sadelain M.

Nat Protoc. 2011 Aug 4;6(9):1274-89. doi: 10.1038/nprot.2011.362.

PMID:
21886096
12.

Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

Uchida N, Haro-Mora JJ, Fujita A, Lee DY, Winkler T, Hsieh MM, Tisdale JF.

Stem Cells. 2017 Mar;35(3):586-596. doi: 10.1002/stem.2517. Epub 2016 Oct 26.

13.

Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs.

Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, Lv X, Huang Y, Liu DP.

Sci Rep. 2015 Jul 9;5:12065. doi: 10.1038/srep12065.

14.

Genetic therapy for beta-thalassemia: from the bench to the bedside.

Arumugam P, Malik P.

Hematology Am Soc Hematol Educ Program. 2010;2010:445-50. doi: 10.1182/asheducation-2010.1.445.

PMID:
21239833
15.

Hemoglobin gene therapy for β-thalassemia.

Bank A.

Hematol Oncol Clin North Am. 2010 Dec;24(6):1187-201. doi: 10.1016/j.hoc.2010.08.002. Review.

PMID:
21075288
16.

Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice.

Wang Y, Zheng CG, Jiang Y, Zhang J, Chen J, Yao C, Zhao Q, Liu S, Chen K, Du J, Yang Z, Gao S.

Cell Res. 2012 Apr;22(4):637-48. doi: 10.1038/cr.2012.23. Epub 2012 Feb 7.

17.
18.

Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia.

Hanawa H, Hargrove PW, Kepes S, Srivastava DK, Nienhuis AW, Persons DA.

Blood. 2004 Oct 15;104(8):2281-90. Epub 2004 Jun 15.

19.

Safe mobilization of CD34+ cells in adults with β-thalassemia and validation of effective globin gene transfer for clinical investigation.

Boulad F, Wang X, Qu J, Taylor C, Ferro L, Karponi G, Bartido S, Giardina P, Heller G, Prockop SE, Maggio A, Sadelain M, Rivière I.

Blood. 2014 Mar 6;123(10):1483-6. doi: 10.1182/blood-2013-06-507178. Epub 2014 Jan 15.

20.

Comparative analysis of FV vectors with human α- or β-globin gene regulatory elements for the correction of β-thalassemia.

Morianos I, Siapati EK, Pongas G, Vassilopoulos G.

Gene Ther. 2012 Mar;19(3):303-11. doi: 10.1038/gt.2011.98. Epub 2011 Jul 7.

PMID:
21734726

Supplemental Content

Support Center