Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms.

Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA.

Mol Microbiol. 2010 Dec;78(6):1379-92. doi: 10.1111/j.1365-2958.2010.07414.x. Epub 2010 Oct 18.

2.

Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative.

Gibson J, Sood A, Hogan DA.

Appl Environ Microbiol. 2009 Jan;75(2):504-13. doi: 10.1128/AEM.01037-08. Epub 2008 Nov 14.

3.

Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA.

MBio. 2013 Jan 29;4(1):e00526-12. doi: 10.1128/mBio.00526-12.

4.

Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy.

Rodrigues ME, Lopes SP, Pereira CR, Azevedo NF, Lourenço A, Henriques M, Pereira MO.

PLoS One. 2017 Jan 23;12(1):e0170433. doi: 10.1371/journal.pone.0170433. eCollection 2017.

5.

Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

Bandara HM, K Cheung BP, Watt RM, Jin LJ, Samaranayake LP.

Mol Oral Microbiol. 2013 Feb;28(1):54-69. doi: 10.1111/omi.12006. Epub 2012 Oct 12.

PMID:
23194472
6.

Possible mechanism of antifungal phenazine-1-carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans.

Tupe SG, Kulkarni RR, Shirazi F, Sant DG, Joshi SP, Deshpande MV.

J Appl Microbiol. 2015 Jan;118(1):39-48. doi: 10.1111/jam.12675. Epub 2014 Nov 21.

7.

[Anti-candidal activity of clinical Pseudomonas aeruginosa strains and in vitro inhibition of Candida biofilm formation].

Keçeli Özcan S, Dündar D, Sönmez Tamer G.

Mikrobiyol Bul. 2012 Jan;46(1):39-46. Turkish.

PMID:
22399170
8.

Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole.

Bink A, Vandenbosch D, Coenye T, Nelis H, Cammue BP, Thevissen K.

Antimicrob Agents Chemother. 2011 Sep;55(9):4033-7. doi: 10.1128/AAC.00280-11. Epub 2011 Jul 11.

9.

Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains.

Cugini C, Morales DK, Hogan DA.

Microbiology. 2010 Oct;156(Pt 10):3096-107. doi: 10.1099/mic.0.037911-0. Epub 2010 Jul 23.

10.

Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

Zheng S, Chang W, Li C, Lou H.

FEMS Yeast Res. 2016 May;16(3). pii: fow029. doi: 10.1093/femsyr/fow029. Epub 2016 Apr 5.

PMID:
27189057
11.

Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides.

Stenuit B, Lamblin G, Cornelis P, Agathos SN.

Environ Sci Technol. 2012 Oct 2;46(19):10605-13. doi: 10.1021/es302046h. Epub 2012 Sep 10.

PMID:
22881832
12.

Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth.

Kerr JR, Taylor GW, Rutman A, Høiby N, Cole PJ, Wilson R.

J Clin Pathol. 1999 May;52(5):385-7.

13.

Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, Ha DG, Willger SD, O'Toole GA, Harwood CS, Dietrich LE, Hogan DA.

PLoS Pathog. 2014 Oct 23;10(10):e1004480. doi: 10.1371/journal.ppat.1004480. eCollection 2014 Oct.

14.

Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo.

Bink A, Govaert G, Vandenbosch D, Kuchariková S, Coenye T, Nelis H, Van Dijck P, Cammue BP, Thevissen K.

J Med Microbiol. 2012 Jun;61(Pt 6):813-9. doi: 10.1099/jmm.0.041020-0. Epub 2012 Mar 15.

PMID:
22422573
15.

Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans.

Purschke FG, Hiller E, Trick I, Rupp S.

Mol Cell Proteomics. 2012 Dec;11(12):1652-69. doi: 10.1074/mcp.M112.017673. Epub 2012 Aug 31.

16.

Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.

Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ.

J Med Microbiol. 2011 Sep;60(Pt 9):1241-7. doi: 10.1099/jmm.0.030692-0. Epub 2011 Apr 7.

PMID:
21474609
17.

Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus.

Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y.

Curr Biol. 2015 Jan 5;25(1):29-37. doi: 10.1016/j.cub.2014.11.018. Epub 2014 Dec 18.

18.

Pseudomonas-Candida interactions: an ecological role for virulence factors.

Hogan DA, Kolter R.

Science. 2002 Jun 21;296(5576):2229-32.

19.

Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms.

Trejo-Hernández A, Andrade-Domínguez A, Hernández M, Encarnación S.

ISME J. 2014 Oct;8(10):1974-88. doi: 10.1038/ismej.2014.53. Epub 2014 Apr 17.

20.

Supplemental Content

Support Center