Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Integration of optical protein with electronics for bio-nanosensors.

Anton C, Walczak K, Lueking D, Friedrich C.

J Nanosci Nanotechnol. 2010 Sep;10(9):6104-9.

PMID:
21133156
2.

Potential applications of bacteriorhodopsin mutants.

Saeedi P, Moosaabadi JM, Sebtahmadi SS, Mehrabadi JF, Behmanesh M, Mekhilef S.

Bioengineered. 2012 Nov-Dec;3(6):326-8. doi: 10.4161/bioe.21445. Epub 2012 Aug 16. Review.

3.

Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response.

Li R, Cui X, Hu W, Lu Z, Li CM.

J Colloid Interface Sci. 2010 Apr 1;344(1):150-7. doi: 10.1016/j.jcis.2009.12.013. Epub 2009 Dec 6.

PMID:
20056227
4.

Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties.

Zaitsev SY, Solovyeva DO, Nabiev I.

Adv Colloid Interface Sci. 2012 Nov 15;183-184:14-29. doi: 10.1016/j.cis.2012.07.003. Epub 2012 Jul 28. Review.

PMID:
22906866
5.

Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics.

Jin Y, Honig T, Ron I, Friedman N, Sheves M, Cahen D.

Chem Soc Rev. 2008 Nov;37(11):2422-32. doi: 10.1039/b806298f. Epub 2008 Sep 19. Review.

PMID:
18949115
6.

Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots.

Rakovich A, Sukhanova A, Bouchonville N, Lukashev E, Oleinikov V, Artemyev M, Lesnyak V, Gaponik N, Molinari M, Troyon M, Rakovich YP, Donegan JF, Nabiev I.

Nano Lett. 2010 Jul 14;10(7):2640-8. doi: 10.1021/nl1013772.

PMID:
20521831
7.

Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor.

Chen HM, Jheng KR, Yu AD.

Biosens Bioelectron. 2017 May 15;91:24-31. doi: 10.1016/j.bios.2016.12.032. Epub 2016 Dec 13.

PMID:
27987407
8.

Molecular scale conductance photoswitching in engineered bacteriorhodopsin.

Berthoumieu O, Patil AV, Xi W, Aslimovska L, Davis JJ, Watts A.

Nano Lett. 2012 Feb 8;12(2):899-903. doi: 10.1021/nl203965w. Epub 2012 Jan 10.

PMID:
22148875
9.

Purple membrane multilayers: detailed structure and photoelectric characteristics of bacteriorhodopsin.

Maximychev AV, Chamorovsky SK, Panov VI, Fedorov EA, Rambidi NG.

Biosystems. 1992;27(4):195-9.

PMID:
1493205
10.

Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein.

Griep M, Winder E, Lueking D, Friedrich C, Mallick G, Karna S.

J Nanosci Nanotechnol. 2010 Sep;10(9):6029-35.

PMID:
21133143
11.

Integration of cell membranes and nanotube transistors.

Bradley K, Davis A, Gabriel JC, Grüner G.

Nano Lett. 2005 May;5(5):841-5.

PMID:
15884881
12.

Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.

Rhinow D, Imhof M, Chizhik I, Baumann RP, Hampp N.

J Phys Chem B. 2012 Jun 28;116(25):7455-62. doi: 10.1021/jp2112846. Epub 2012 Apr 30.

PMID:
22512248
13.

Optical characteristics of polymer films based on bacteriorhodopsin for irreversible recording of optical information.

Druzhko AB.

Photochem Photobiol. 2009 Mar-Apr;85(2):614-6. doi: 10.1111/j.1751-1097.2008.00527.x.

PMID:
19222793
14.

Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin.

Kuo CL, Chu LK.

Bioelectrochemistry. 2014 Oct;99:1-7. doi: 10.1016/j.bioelechem.2014.05.003. Epub 2014 Jun 3.

PMID:
24935522
15.
16.

Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.

Rhinow D, Vonck J, Schranz M, Beyer A, Gölzhäuser A, Hampp N.

Phys Chem Chem Phys. 2010 May 7;12(17):4345-50. doi: 10.1039/b923756a. Epub 2010 Feb 23.

PMID:
20407705
17.

Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.

Li H, Chen DL, Zhong S, Xu B, Han BS, Hu KS.

J Phys Chem B. 2005 Jun 9;109(22):11273-8.

PMID:
16852376
18.

Reconstitution of bacteriorhodopsin into cyclic lipid vesicles.

Shibakami M, Tsuihiji H, Miyoshi S, Nakamura M, Goto R, Mitaku S, Sonoyama M.

Biosci Biotechnol Biochem. 2008 Jun;72(6):1623-5. Epub 2008 Jun 7.

19.

Preliminary ultrasonication affects the rate of the bacteriorhodopsin bleaching and the effectiveness of the reconstitution process in bacterioopsin.

Druzhko AB, Pirutin SK.

Photochem Photobiol. 2014 Sep-Oct;90(5):1207-10. doi: 10.1111/php.12275. Epub 2014 Apr 21.

PMID:
24678657
20.

Photoelectric response of polarization sensitive bacteriorhodopsin films.

Li Q, Stuart JA, Birge RR, Xu J, Stickrath A, Bhattacharya P.

Biosens Bioelectron. 2004 Mar 15;19(8):869-74.

PMID:
15128106

Supplemental Content

Support Center